

E.S. Battistelli Experimental Cosmology group Physics department Sapienza, University of Rome

Image credits: cosmic web (http://cosmicweb.kimalbrecht.com/)

TALK OUTLINE

 The need of high angular resolution mm observations and resolved measurements of the SZ effect

MISTRAL

- Sardinia Radio Telescope
- Cryostat
- Optics
- Detectors and Read-out
- Laboratory calibration
- Transportation and mount
- On-site calibration → Isopi's poster
- Conclusions

TALK OUTLINE

- The need of high angular resolution mm observations and resolved measurements of the SZ effect
- MISTRAL
 - Sardinia Radio Telescope
 - Cryostat
 - Optics
 - Detectors and Read-out
 - Laboratory calibration
 - Transportation and mount
 - On-site calibration → Isopi's poster
- Conclusions

TALK OUTLINE

- The need of high angular resolution mm observations and resolved measurements of the SZ effect
- MISTRAL
 - Sardinia Radio Telescope
 - Cryostat
 - Optics
 - Detectors and Read-out
 - Laboratory calibration
 - Transportation and mount
 - On-site calibration → Isopi's poster
- Conclusions

COSMIC MICROWAVE BACKGROUND

PLANCK

Galaxy clusters (SZ effect)

Radio/sub-mm sources

00

30x22 deg² CMB map as seen from Planck+ACT-DR4 (150GHz)

THE SUNYAEV ZEL'DOVICH EFFECT

- When CMB interacts with hot ionized medium, its photons undergo inverse Compton scattering
- SZ: spectral distortion of the CMB due to inverse Compton scattering by a hot (T~10⁸K) electron gas typically in galaxy clusters is quantified by:

$$y = \int n_e \sigma_T \frac{k_B T_e}{m_e c^2} dl = \tau \theta_e$$

(Sunyaev & Zel'dovich, Comm.A.S.P., 1972)

THE SUNYAEV ZEL'DOVICH EFFECT

- When CMB interacts with hot ionized medium, its photons undergo inverse Compton scattering
- SZ: spectral distortion of the CMB due to inverse Compton scattering by a hot (T~10⁸K) electron gas typically in galaxy clusters is quantified by:

$$\mathbf{y} = \int n_e \sigma_T \frac{k_B T_e}{m_e c^2} dl = \tau \theta_e$$

 X-ray studies could see them but due to the different dependence wrt to n_e and T_e, SZ can provide more information for low densities environments

 $X_{br} \propto ne^2 \cdot \sqrt{T_e} \cdot l$

THE SUNYAEV ZEL'DOVICH EFFECT

- When CMB interacts with hot ionized medium, its photons undergo inverse Compton scattering
- SZ: spectral distortion of the CMB due to inverse Compton scattering by a hot (T~10⁸K) electron gas typically in galaxy clusters is quantified by:

$$\mathbf{y} = \mathbf{n}_e \mathbf{q}_T \frac{k_B T_e}{m_e c^2} dl = \tau \theta_e$$

 X-ray studies could see them but due to the different dependence wrt to n_e and T_e, SZ can provide more information for low densities environments

(Sunyaev & Zel 'dovich, Comm.A.S.P., 1972)

- Non relaxed galaxy clusters can benefit from high angular resolution SZ observation: turbulence predicted by hydrodynamical simulations of the order of y≤10⁻⁵ at the few hundreds of kpc
- Galaxy clusters sit at the knots of the Cosmic Web and they are connected by bridges and filaments
- In bridges, predictions of the scale at which baryons depart from DM distribution: 0.7-7Mpc scales is key and show a specific signature illustrisTNG simulation (Galarraga-Espinosa et al. 2022)

Vazza et al. (2018)

- Non relaxed galaxy clusters can benefit from high angular resolution SZ observation: turbulence predicted by hydrodynamical simulations of the order of y≲10⁻⁵ at the few hundreds of kpc
- Galaxy clusters sit at the knots of the Cosmic Web and they are connected by bridges and filaments
- In bridges, predictions of the scale at which baryons depart from DM distribution: 0.7-7Mpc scales is key and show a specific signature illustrisTNG simulation (Galarraga-Espinosa et al. 2022)

Vazza et al. (2018)

- Non relaxed galaxy clusters can benefit from high angular resolution SZ observation: turbulence predicted by hydrodynamical simulations of the order of y≲10⁻⁵ at the few hundreds of kpc
- Galaxy clusters sit at the knots of the Cosmic Web and they are connected by bridges and filaments
- In bridges, predictions of the scale at which baryons depart from DM distribution: 0.7-7Mpc scales is key and show a specific signature illustrisTNG simulation (Galarraga-Espinosa et al. 2022)

Vazza et al. (2018)

- Non relaxed galaxy clusters can benefit from high angular resolution SZ observation: turbulence predicted by hydrodynamical simulations of the order of y≲10⁻⁵ at the few hundreds of kpc
- Galaxy clusters sit at the knots of the Cosmic Web and they are connected by bridges and filaments
- In bridges, predictions of the scale at which baryons depart from DM distribution: 0.7-7Mpc scales is key and show a specific signature illustrisTNG simulation (Galarraga-Espinosa et al. 2022)

- Non relaxed galaxy clusters can benefit from high angular resolution SZ observation: turbulence
 predicted by hydrodynamical simulations of the order of y ≤ 10⁻⁵ at the few hundreds of kpc
- Galaxy clusters sit at the knots of the Cosmic Web and they are connected by bridges and filaments
- In bridges, predictions of the scale at which baryons depart from DM distribution: 0.7-7Mpc scales is key and show a specific signature illustrisTNG simulation (Galarraga-Espinosa et al. 2022)

- Non relaxed galaxy clusters can benefit from high angular resolution SZ observation: turbulence
 predicted by hydrodynamical simulations of the order of y≲10⁻⁵ at the few hundreds of kpc
- Galaxy clusters sit at the knots of the Cosmic Web and they are connected by bridges and filaments
- In bridges, predictions of the scale at which baryons depart from DM distribution: 0.7-7Mpc scales is key and show a specific signature illustrisTNG simulation (Galarraga-Espinosa et al. 2022)

MISTRAL

SARDINIA RADIO TELESCOPE

- 64m radio telescope located in Sardinia, at 600m a.s.l. at 50km from Cagliari in a radio quiet zone
- Suited for observations up to 116GHz: current surface rms $\sim 200 \mu$ m (to be further improved)
- Estimation of sky opacity based on recorded dedicated radiometer data:
 - τ<0.15Np (50th percentile) at 93GHz during winter nights;
 - the PWV in the same conditions is mainly 8mm

SRT: ANTENNA

Bolli at al. Journal of Astronomical Instrumentation, Vol. 4, Nos. 3 & 4 (2015)

- Fully steerable antenna of (M1) 64m in diameter
- f/2.34 Gregorian room focus
- Active M1 composed of 1008 electromechanically controlled aluminum elements by actuators
- M2 is composed of 49 aluminum elements
- Alidade (compressor) room 120m apart
- Timeline:
 - 2016: early science;
 - 2018- : normal operations;
 - 2020- : PON to upgrade the receiver fleet and the SRT

performance

A. Attoli, E. Barbavara, **E. S. Battistelli**, P. de Bernardis, F. Cacciotti, G. Carboni, E. Carretti, D. Ciccalotti, F. Columbro, A. Coppolecchia, A. Cruciani, G. D'Alessandro, M. De Petris, F. Govoni, G. Isopi, A. Ladu, L. Lamagna, P. Marongiu, S. Masi, **M. Murgia**, A. Navarrini, A. Novelli, A. Occhiuzzi, A. Orlati, A. Paiella, G. Pettinari, F. Piacentini, M. Pili, T. Pisanu, S. Poppi, M. R. Schirru, G. Vargiu

Picture acknowledgment: Sergio Poppi. INAF-SRT: http://www.srt.inaf.it/

MISTRAL

A. Attoli, E. Barbavara, **E. S. Battistelli**, P. de Bernardis, F. Cacciotti, G. Carboni, E. Carretti, D. Ciccalotti, F. Columbro, A. Coppolecchia, A. Cruciani, G. D'Alessandro, M. De Petris, F. Govoni, G. Isopi, A. Ladu, L. Lamagna, P. Marongiu, S. Masi, **M. Murgia**, A. Navarrini, A. Novelli, A. Occhiuzzi, A. Orlati, A. Paiella, G. Pettinari, F. Piacentini, M. Pili, T. Pisanu, S. Poppi, M. R. Schirru, G. Vargiu

Picture acknowledgment: Sergio Poppi. INAF-SRT: http://www.srt.inaf.it/

MISTRAL: CRYOSTAT

- MISTRAL is a facility instrument. Strong limitations in the Gregorian room:
 - ~250kg maximum
 - 700x700x2400mm
 - RF shielded and quite
 - Should work also when SRT is parked
 - Long (~120m) cryocooler lines
 - Remote PT compressor (~120m)
 - Not accessible
- Cryostat built by QMC
- Composed of 40K, 4K radiation shields cooled by a 1.5W PT cryocooler
- Plus ~0.8K 300mK 200mK He-10 sorption fridge provided by Chase Research Cryogenics

MISTRAL: CRYOSTAT

~250Kg ; ~1m³

1680mm

• MISTRAL is a facility instrument. Strong limitations in the Gregorian room:

- ~250kg maximum
- 700x700x2400mm
- RF shielded and quite
- Should work also when SRT is parked
- Long (~120m) cryocooler lines
- Remote PT compressor (~120m)
- Not accessible
- Cryostat built by QMC
- Composed of 40K, 4K radiation shields cooled by a 1.5W PT cryocooler
- Plus ~0.8K 300mK 200mK He-10 sorption fridge provided by Chase Research Cryogenics

MISTRAL: (QUASI-)OPTICS

Combination of: Metal mesh filters, thin IR filters, sub-mm low pass filters (LPE), a final 77-103GHz Band pass filter

MISTRAL: OPTICS

- Filled (naked) array of KIDs
- Cold stop at 4K to avoid extra-load on KIDs
- Rogers R30003 ARC silicon lenses: a biconvex and a meniscus ones (0.91<SR<0.97)
- angular resolution = 12 arcsec
- F.O.V. = 4 arcmin
- Pixel separation = 10.6 arcsec

MISTRAL: OPTICS

- Filled (naked) array of KIDs
- Cold stop at 4K to avoid extra-load on KIDs
- Rogers R30003 ARC silicon lenses: a biconvex and a meniscus ones (0.91<SR<0.97)
- angular resolution = 12 arcsec
- F.O.V. = 4 arcmin
- Pixel separation = 10.6 arcsec

MISTRAL: OPTICS

- Filled (naked) array of KIDs
- Cold stop at 4K to avoid extra-load on KIDs
- Rogers R30003 ARC silicon lenses: a biconvex and a meniscus ones (0.91<SR<0.97)
- angular resolution = 12 arcsec
- F.O.V. = **4** arcmin
- Pixel separation = 10.6 arcsec

MISTRAL: KID DETECTORS

- KIDs are fast, superconductive detectors
- Lumped element configuration, KIDs act as adsorbers/inductors coupled to a capacitor to form: high-Q LC resonators

- Cooper pair change and kinetic inductance produce a change in the resonant frequency
- They can be sensed by measuring the change in the amplitude and phase of the bias signal

- High values of Q allow to multiplex thousands of KIDs, with different frequencies
- Frequency Domain Multiplexing (ROACH2 based) ideal for these detectors

MISTRAL: KID DETECTORS

- KIDs are fast, superconductive detectors
- Lumped element configuration, KIDs act as adsorbers/inductors coupled to a capacitor to form: high-Q LC resonators

- High values of Q allow to multiplex thousands of KIDs, with different frequencies
- Frequency Domain Multiplexing (ROACH2 based) ideal for these detectors

- Cooper pair change and kinetic inductance produce a change in the resonant frequency
- They can be sensed by measuring the change in the amplitude and phase of the bias signal

MISTRAL: KID DETECTORS

- KIDs are fast, superconductive detectors
- Lumped element configuration, KIDs act as adsorbers/inductors coupled to a capacitor to form: high-Q LC resonators

- High values of Q allow to multiplex thousands of KIDs, with different frequencies
- Frequency Domain Multiplexing (ROACH2 based) ideal for these detectors

- Cooper pair change and kinetic inductance produce a change in the resonant frequency
- They can be sensed by measuring the change in the amplitude and phase of the bias signal

- Designed at Sapienza: superconductor in Ti-Al bilayer 10 + 30 nm thick (T_c =945mK) with 21nm Al feedline (T_c =1.4K). Fabricated at CNR on 4" Silicon substrate 235 μ m
- Front-illuminated 3rd order Hilbert crude absorber with backshort separated by 10.6" (in the sky) 3mm x 3mm absorbers on a equilateral triangle every 4.2mm

MISTRAL: DETECTORS

- Designed at Sapienza: superconductor in Ti-Al bilayer 10 + 30 nm thick (T_c =945mK) with 21nm Al feedline (T_c =1.4K). Fabricated at CNR on 4" Silicon substrate 235 μ m
- Front-illuminated 3rd order Hilbert crude absorber with backshort separated by 10.6" (in the sky) 3mm x 3mm absorbers on a equilateral triangle every 4.2mm

MISTRAL: DETECTORS

- Designed at Sapienza: superconductor in Ti-Al bilayer 10 + 30 nm thick (T_c =945mK) with 21nm Al feedline (T_c =1.4K). Fabricated at CNR on 4" Silicon substrate 235 μ m
- Front-illuminated 3rd order Hilbert crude absorber with backshort separated by 10.6" (in the sky) 3mm x 3mm absorbers on a equilateral triangle every 4.2mm

MISTRAL: DETECTORS

- Designed at Sapienza: superconductor in Ti-Al bilayer 10 + 30 nm thick (T_c =945mK) with 21nm Al feedline (T_c =1.4K). Fabricated at CNR on 4" Silicon substrate 235 μ m
- Front-illuminated 3rd order Hilbert crude absorber with backshort separated by 10.6" (in the sky) 3mm x 3mm absorbers on a equilateral triangle every 4.2mm

- Designed at Sapienza: superconductor in Ti-Al bilayer 10 + 30 nm thick (T_c =945mK) with 21nm Al feedline (T_c =1.4K). Fabricated at CNR on 4" Silicon substrate 235 μ m
- Front-illuminated 3rd order Hilbert crude absorber with backshort separated by 10.6" (in the sky) 3mm x 3mm absorbers on a equilateral triangle every 4.2mm
- 0.96MHz (median) pixel separation

MISTRAL CALIBRATION: MOUNT

•MISTRAL calibration:

- •Pulse Tube operations (120m
- apart) and cryogenic performance
- Mechanical and optical alignment
- •Pixel recognition
- •Pixel performance
- •Mitigation of PT and mount noise;
- Mitigation of the KIDs sensitivity
- to temperature fluctuation;
- •Telescope efficiency and panels rms reduction;
- •Focusing.

15

21

20

•MISTRAL calibration:

•Pulse Tube operations (120m apart) and cryogenic performance

•MISTRAL calibration:

Mechanical and optical alignment

- •MISTRAL calibration:
 - •Pixel recognition
 - •Pixel performance

•Sensitivity to sky-dip and to atmospheric load

•MISTRAL calibration:

Mitigation of the KIDs sensitivity

to temperature fluctuation;

•MISTRAL calibration:

- •Telescope efficiency and panels rms reduction;
- •Focusing.

MISTRAL: FACILITY INSTRUMENT

Observing with the Italian radio telescopes

Welcome to the Italian radio telescopes users' page

Here you can access all of the resources needed to achieve successful single-dish and extra-EVN interferometric observations

Contact us

Regular call is closed. Next call will be in March 2025. Proposals for ToOs and DDT can be submitted anytime. The offered instrumentation is listed here.

CONCLUSIONS

High angular resolution
mm observations needed:
SZ is a unique tool to
study the Cosmic web

•MISTRAL is a new (agile) millimetric camera

•Calibration and commissioning just started

•MISTRAL will be a facility instrument...ready for observations soon

CONCLUSIONS

High angular resolution
mm observations needed:
SZ is a unique tool to
study the Cosmic web

•MISTRAL is a new (agile) millimetric camera

•Calibration and commissioning just started

•MISTRAL will be a facility instrument...ready for observations soon

CONCLUSIONS

High angular resolution
mm observations needed:
SZ is a unique tool to
study the Cosmic web

•MISTRAL is a new (agile) millimetric camera

•Calibration and commissioning just started

•MISTRAL will be a facility instrument...ready for observations soon

THANK YOU!

