CMB-CAL @ BICOCCA *4—8 November ²⁰²⁴*

Planck calibration*Lessons learned*

Marco BersanelliPhysics Department, Università degli Studi di Milano

Planck Collaboration 2018

The success of Planck relied on a very demanding calibration effort throughout the project

UNIVERSITÀ *Milano, 4-8 Nov 2024 – M. Bersanelli* **DEGLI STUDI** *Planck calibration: Lessons learned***DI MILANO**

Planck – Ground & in-flight calibration

Planck calibration: Lessons learned

Many people (virtually all the Planck Collaboration) were involved

UNIVERSITÀ

DI MILANO

Milano, 4-8 Nov 2024 – M. Bersanelli **DEGLI STUDI** *Planck calibration: Lessons learned*

PLM SVM mating

"The best PLM-SVM interface? Three bolts."

Michel Anderegg (ESA Payload Manager of COBRAS/SAMBA)

Planck cooling chain and instruments required a drastic break of the traditional "PLM—SVM" separation

-- Complex/critical interfaces

18th June 2007 Toulouse 2007

Dutch Space

-- Decisive role of system level test on the ground

(Likely to happen in future CMB space missions)

 1000

Planck Instruments, PPLM, SVM

Thermal requirements were key design driver of Planck payload and satellite

Planck Collaboration A&A 536, A2 (2011)

- • Complex and critical interfaces between PPLM and SVM
	- The 3-stage cooling system (18-20K, 4K, 0.1K)
	- Instruments (LFI waveguides)
	- Passive cooling (3rd V-groove at <60K)
- Fully representative instrument configuration was obtained only at satellite integration level
	- Thermal oscillations when 1.6K stage was too cold (exceeding goal performance)
	- Margins management!
- • The CSL facility supported instruments operation in nominal conditions (*not initially foreseen!)*
	- -4K blackbody calibrator
- • CSL test was needed by both LFI and HFI to calibrate Instrument thermal model

Instrument model

Key thermal requirements: T and stability at 300, 20K, 4K, 0.1K

- • Instrument model:
	- Thermal transfer functions
	- Radiometric transfer functions
	- Optical parameters
- • Support ground calibration at increasing levels of integration (and QM, FM)
	- -Finalize instrument design (*requirements, interfaces*)
	- -Retrieve instrument status (*thermal, electrical*) from H/K info
	- -Update and use for in-flight analysis

Planck CQM test campaign (CSL) – September 2005

Demonstration of passive cooling of 3rd V-groove requirement (<60K), with margin (~50K) Excellent agreement with model predictionESA implemented the solution -- *Planck was first satellite to adopt this technique*

Planck Flight Model test campaign (CSL) – July-August 2008

Fully integrated system (intrsuments, cryo-chain, Telescope, SVM)

Calibrators: CSL 4K Sky Load

Beams footprints on target

integrating sphere blackbody sources

Planck/HFI PFM

polarizer optical system

2K Saturne plate

HFI FM cryo testing

Planck: "Single channel approach"

- •Each of the LFI+HFI channels (~50 horns) was known "by name" and treated with care
- •Huge amount of dedicated tuning, optimization, debugging, …
- Each noise spectrum/parameter was repeatedly measured on-ground at all levels \bullet (unit, RCA/assembly, instrument, system, in flight)

Example: 70GHz single diode spectra

Planck: "Single channel approach"

- \bullet Each of the LFI+HFI channels (~50 horns) was known "by name" and treated with care
- •Huge amount of dedicated tuning, optimization, debugging, …
- Each noise spectrum/parameter was repeatedly measured on-ground at all levels \bullet (unit, RCA/assembly, instrument, system, in flight)

Example: HFI Bolometers measured Noise Equivalent Temperature

In-flight cryo-chain performance & mission lifetime

Excellent in-flight thermal performance

- Bolometer plate = 103mK
- LFI reference loads = 4.4-4.6 K
- LFI focal plane = 19.8–20.8 K
- Secondary mirror = 39.6 K
- Primary mirror = 36.5 K
- V-groove 3 (final radiative pre-cool) = 46 K

H/K data from Planck mission

Flight H/K data

(Planck Collaboration 2011)

FPU (18-20K) HFI box (4K)

LFI back-end (300K)

Combined effect on LFI of flucturations at 300, 20 and 4K

Thermal effects were controlled to beolw significance thanks to early definition of adequate requirements

Impact on HFI from Cosmic Rays
lisianed with a grid absorber efficient for a

Bolometers were disigned with a grid absorber, efficient for photon absorption but offering a small cross section to particles

Effect is both glitches and thermal (limited the stability of 0.1K stage)

- Effect could have been predicted (SOHO data on solar CR modulation)
- •"Bolometers (or any detector sensitive to particles) AND their environment have to be DESIGNED to minimize the effect of cosmic rays" (J.-M.Lamarre)
- Prepare for removing glitches and control residual systematics (as done in LiteBIRD)
- Early tests on the ground needed to verify glitch rate and test data analysis

CO linesA probem turned into an achievement

- • CO lines are strong and «contaminate» dust measurements: impact on HFI
- • Accurate measurements of the HFI spectral response was crucial to produce CO maps
- An unexpected scientific outcome of Planck. •

• Future missions should consider trade off between including lines and limit bandwidth

Planck Telescope testing

Tauber et al. A&A 520, A2 (2010)

- • Photogrammetry of Primary and Secondary Reflectors from 300K to ∼95 K
	- *Measure curvature R, conic constant k, largescale deformations*
- •Interferometry at λ =10 µm of SR between 300K and ∼40 K
	- *Trace small-scale deformations ("dimples")*
- • Photogrammetry of telescope structure between 300K and ∼95 K
	- *Thermoelastic deformations*

Estimated surface deformation at 40K

Extrapolate Telescopegeometry to 40K

Generate GRASP models at 300K (for testing) and 40K

(Feedhorns beams precisely measured at instrument and unit level)

LFI feedhorns design and measurements

Villa et al. JINST 2009

Corrugation profile (sin-squared + exponential) for compactness and high control of sidelobes

$$
R(z) = R_{th} + (R_s - R_{th}) \left[(1 - A) \frac{z}{L_s} + A \sin^{\beta} \left(\frac{\pi z}{2 L_s} \right) \right]
$$

$$
0 \le z \le L_s
$$

$$
R(z) = R_s + e^{\alpha(z - L_s)} - 1; \alpha = \frac{1}{L_e} ln(R_{ap} - R_s)
$$

$$
L < z < I + L
$$

Several frequencies mesured across the-band

Planck RF verification

Planck QM telescope

RFQM:

- Representative focal plane structure
- All relevant payload elements (e.g. baffle, V-groove)
- Test system: CATR at 300K (*Thales, Cannes*)
- Measure 4π beams of flight-like horns at 30-320 GHz (incl. 2 orthogonal polarizations)

Comparing RFQM measurements and Optical model (at 300K)

Consistency with measurements:Model: GRASP physical optics (PO)

- •Co-pol: <1% (low freq), 6-7% (high freq)
- • Cross-pol: several percent below -40dB Discrepancies attributed to measurement errors and CATR-induced systematics
	- **Also Need to rely on in-flight Planets**
Proposurements measurements

Tauber et al. (2019)

Mu-Lab @ UniMI STILES/PNRR – C. Franceschet et al. New CATR 2x2m up to 600GHz New NF system up to 750GHz Completion: September ²⁰²⁵

MARIANA

AAAAAAA

LACENSE MODELLES LANGUAGEN AND A

GALLER HARRY CONTRACT

GRASP model and in-flight measurement

- - Thermo-elastic model to translate 300K best model to flight conditions (40K reflectors, structure)
- -Compute bandpass-averaged beams (25 cuts/beam)
- -Include effect of OMT cross-pol,
- "Tuned model": fit telescope model parameters (*R, k,* alignment) to in-flight data within measurements errors

Typical accuracy for all LFI beams at all 3 frequencies

Final analysys: Hybrid «scanning beams»

- *Cover time constant effect in HFI beams*
- *-- Data from Jupiter above a S/N floor*
- *GRASP fiducial model below threshold*

LFI far-sidelobes calculation: GRASP MrGTD

Compute scattered field (reflected or diffracted) from each element (backward ray tracing)*Challenge: Identify optimal sequence of significant scattering elements*

Effect of beam pattern variation inside the detector bandwidth

For 11 LFI horns: ~40K beams were computed… How many for LiteBIRD?(No parallel computing with GRASP)

Effect from far sidelobes before subtraction

Effect removed in timelines

Calibration key objective: understanding systematics

Calibration key objective: understanding systematics

Planck Collaboraiton 2018

Planck 2015 North Ecliptic Pole region

LFI 70GHz

Planck 2015 North Ecliptic Pole region

HFI 100GHz

Planck 2015 North Ecliptic Pole region HFI100 – LFI70 diff

CMB: Solar dipole

BeyondPlanck - Colombo et al. (2020)

Ready for next space mission: LiteBIRD

- \bullet Next exciting objectives:
	- -*B-modes at ^r~ 0.001*
	- *Cosmic-variance-limited measurement of τ*
- • Instrument design and testing *(x 100 detectors, …)* must be pushed well beyond that achieved by Planck

- \bullet For LiteBIRD, a coordinated calibration plan (*including thermal, optical aspects*) is being developed
- • Much of the experience gained in Planck is being inherited by LiteBIRD *(through papers & reports, technology, especially people)*
- •Although less directly, it may be useful for ground-based experiments
- •An important message from Planck:

Very ambitious challenges can be successfully tackled!

Systematics and calibration (e.g. LFI)