

Calibration for precision cosmology with the South Pole Telescope

Federica Guidi (IAP, Paris, guidi@iap.fr) on behalf of the NEUCosmoS team and the SPT-3G collaboration

> CMB-Cal 2024 @ Bicocca 4 Nov 2024

> > Corpse and Mirror II | The Art Institute of Chicago

Outline

•

- South Pole Telescope (SPT) third generation camera (3G)
 - SPT-3G cosmology: CMB primary anisotropies and lensing
 - Past: 2018 cosmological constraints
 - Present (upcoming): 2019+2020 survey
 - Future: wide survey and full depth
 - Focus on:
 - Beams
 - Calibration
 - Systematics

The South Pole Telescope

-hall

Credit Kevin Zagorski, March 2024

The South Pole Telescope

- **10 m** primary mirror telescope
- Off-axis Gregorian optics design
- Location: Amundsen-Scott station, South Pole
- Dedicated to CMB observations with high angular resolution (~1 arcmin)
- Funded by *

The South Pole Telescope

- 1. **SPT-SZ** (2007–2011)
 - a. Temperature data
 - b. 95, 150, 220 GHz
 - c. 960 detectors
 - d. 2500 deg2
 - e. 18 µK-arcmin at 150 GHz
- 2. SPTpol (2012–2016)
 - a. Temperature and Pol.
 - b. 95, 150 GHz
 - c. 1600 detectors
 - d. ~500 deg2
 - e. 5.5 (T) 7.7 (pol) μK-arcmin at 150 GHz
- 3. SPT-3G (2017-present)

SPT-3G

Third survey camera installed on SPT after SPT-SZ and SPT-pol

- Deployed in early **2017**
- Field of view 2.8 deg2
- Diameter of the focal plane **0.43 m** (**3.5** larger area than before)
- ~16 000 transition-edge sensor (TES) bolometers
 - Fabricated on **10** monolithic 150 mm silicon wafers
 - Operating at **300 mK**.
- Frequency bands: 95, 150, 220 GHz, FWHM : 1.6, 1.2, 1.0 arcmin
- \rightarrow Sobrin et al. 2022 (<u>arXiv:2106.11202</u>, design and performance)

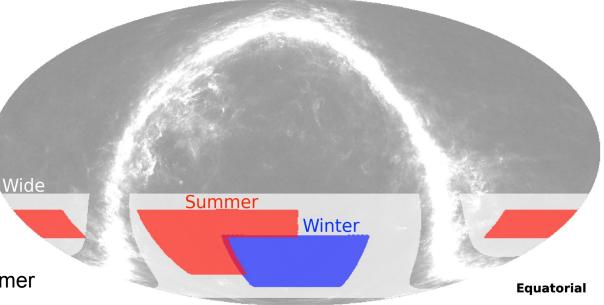
SPT-3G timeline

SPT-3G observations

Fields of observation:

• Winter/Main

- o 8 months/yr
- 1 early survey (2018) +
 5 nominal surveys +
 2 more to come
- perfect overlap with BK


• Summer

- o 4 months/yr
- 4 nominal surveys
- Ext-4K = Winter + Summer

• Wide

- 1yr (2024)
- Ext-10K = Winter + Summer + Wide

SPT-3G footprint and T Planck 353GHz

SPT Collaboration meeting June 2024

1ª

SPT-3G science

- → ACDM constraints → TT/TE/EE, CMB lensing, galaxy clusters, ...
- → Inflation \rightarrow Low- ℓ BB, CMB lensing, ...
- → Birefringence → E/B

 \rightarrow

- → Structure formation → CMB lensing, tSZ, kSZ, ...
- → Epoch of Reionization \rightarrow kSZ, High- ℓ TT, ...
- → Extragalactic foregrounds → High- ℓ TT, ...

Significant improvement to Planck coming from:

- Small angular scales
- Polarization
- Lensing

- → High redshift astrophysics → mm-wave sources, galaxy clusters, ...
- → Solar system science \rightarrow Asteroids, Planet9, ...

SPT-3G Cosmology Past, Present (upcoming), Future

AL.

Credit Kevin Zagorski, March 2024

SPT-3G footprint and T Planck 353GHz

Winter

тКсмв

Equatorial

10

SPT-3G 2018

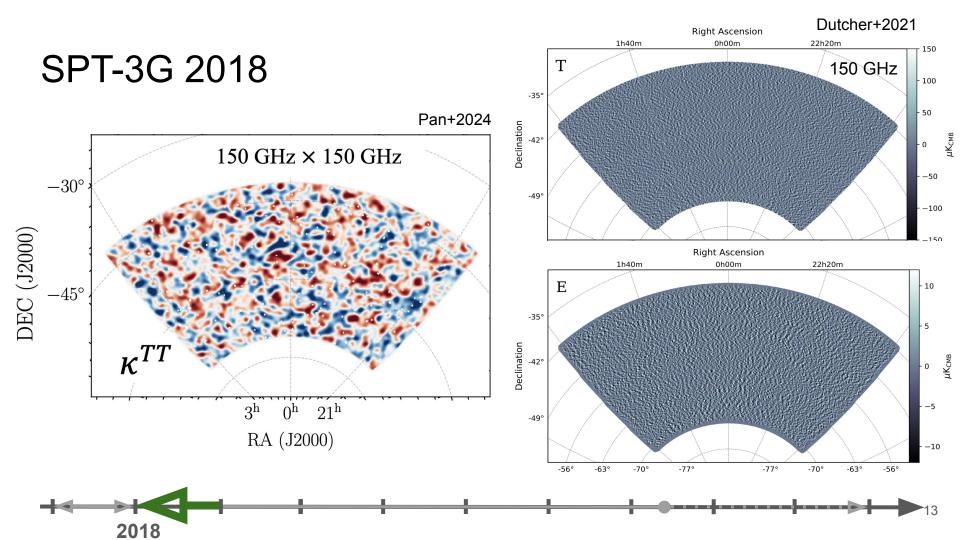
Field:

• Winter

Noise levels:

(at 90, 150, 220 GHz, T):

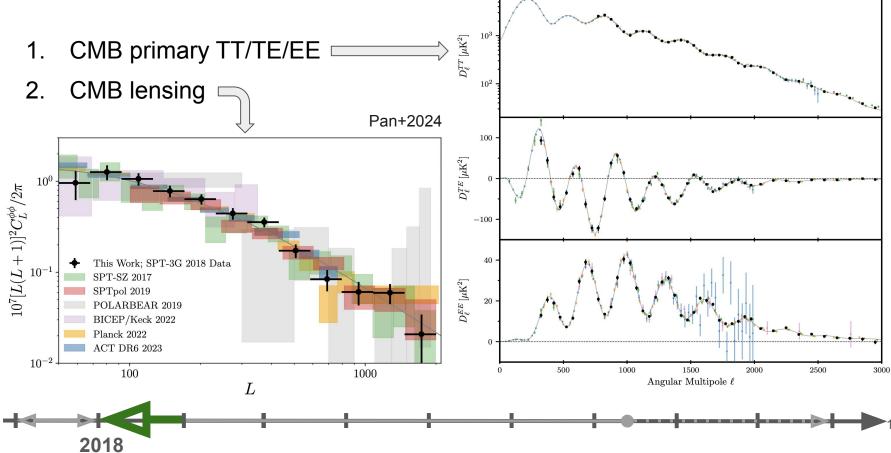
• **21, 15, 53** *µ*K-arcmin

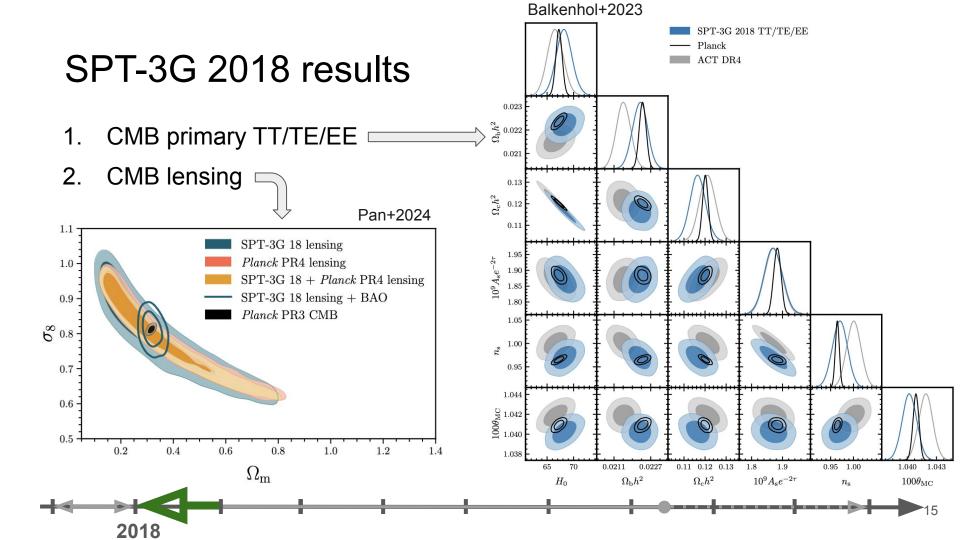

Covered sky fraction:

• 4% (1500 deg2)

Results:

- Maps, TE/EE bandpowers, ACDM. Dutcher et al. 2021 (<u>arXiv:2101.01684</u>)
- ACDM Extensions from TE/EE, Balkenhol et al. 2021 (arXiv:2103.13618)
- Full TT/TE/EE release, Balkenhol et al. 2023 (arXiv:2212.05642)
- CMB lensing, Pan et al. 2024 (<u>arXiv:2308.11608</u>)



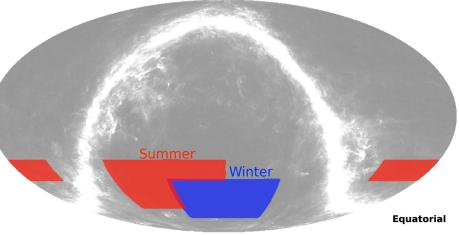


Balkenhol+2023

SPT-3G 2018

SPT-3G 2018 | SPT-SZ/SPTpol | Planck | ACT DR4 | POLARBEAR

SPT-3G Cosmology Present (upcoming)

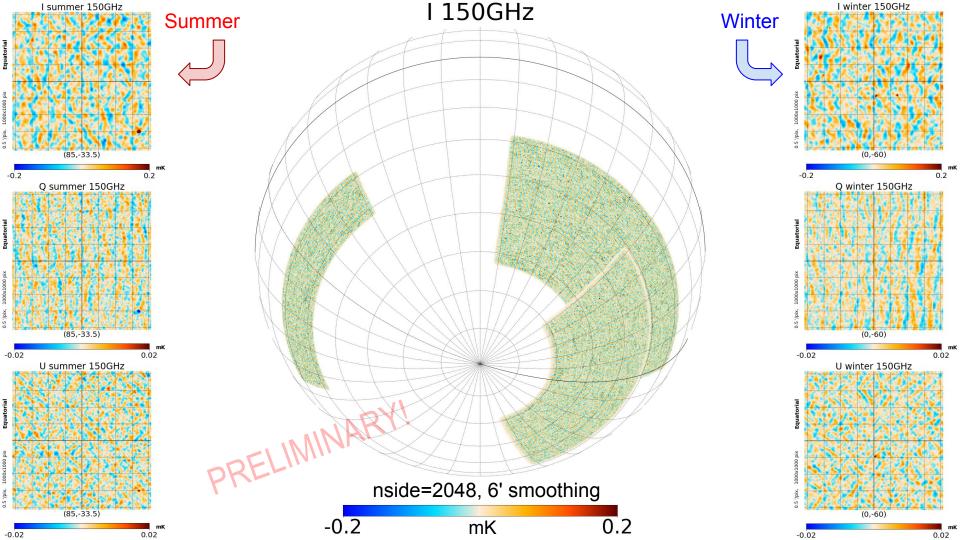

Credit Kevin Zagorski, March 2024

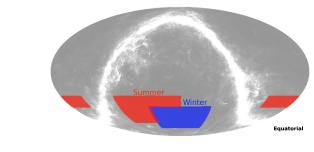
SPT-3G 2019/20

Fields:

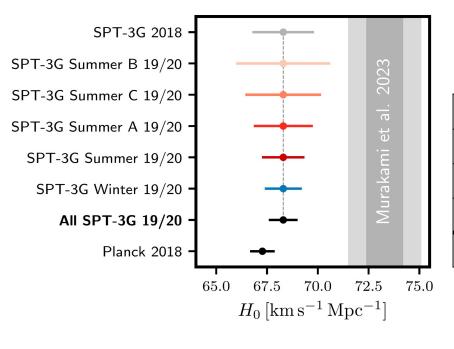
- Winter: deep but small
 → very sensitive at intermediate & high-ℓ
- Summer: shallow but wide
 - → gives access to large scales reducing sample variance
- Ext-4k = Winter+Summer
 - \rightarrow constraints nearing Planck's precision
 - \rightarrow powerful to test extended models

SPT-3G footprint and T Planck 353GHz


Noise levels (at 90, 150, 220 GHz):


- **6, 5, 16** μK-arcmin
- **14, 13, 42** μK-arcmin

Sky fraction:


- 4% (1650 deg2)
- 6.6% (2800 deg2)

SPT-3G 2019/20: ACDM forecasts

PRELIMINARY!

σ (H ₀) [Km/s/Mpc] TT/TE/EE angular power spectra (ΛCDM)				
Planck	SPT-3G Winter	SPT-3G Summer		
0.6	0.9	1.0		
	0.7			
0.43				

Forecasts by L. Balkenhol and S.Raghunathan

Additional 30–40% improvement of the SPT-3G constraints when including the SPT-3G lensing information (TT/TE/EE+ $\phi\phi$)

Many independent pipelines

Primary CMB TT/TE/EE

- Cross-bundles approach for unbiased power spectra
- Analytic covariance (Camphuis et al. arXiv:2204.13721)
- Fast end-to-end simulations (Quickmock) (Hivon et al., in preparation)

- Differentiable likelihood (<u>candl</u>, Balkenhol et al. <u>arXiv:2401.13433</u>) that allows us to:
 - Assess the impact on parameters of potential systematics
 - Perform lots of internal consistency test

(Winter: Camphuis, Quan et al in prep; Summer: Guidi et al in prep; Wide: Fichman, Vitrier et al in prep)

CMB Lensing

- Flat-sky QE (Daley et al. in prep)
- Curved-sky QE (Winter: Omori et al. in prep, Summer: Levy et al. in prep)

Primary and Lensing combined (MUSE bayesian approach, Millea and Seljak 2021, arXiv:2112.09354)

- EE+\$\$\$ (Ge et al in prep)
- +T (Doohan et al in prep)

SPT-3G Cosmology Future

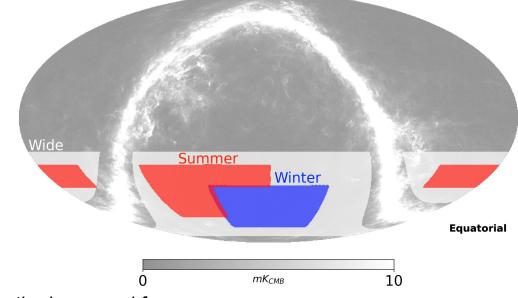
AND ACCOUNT

Credit Kevin Zagorski, March 2024

Final SPT-3G survey: Ext-10K

Ext-10K = Winter+Summer+Wide

- Wide field **FINISHED**!
- -80°< declination < -20°
- Excluding Galaxy
- Total covered sky fraction ~25%


Target noise levels

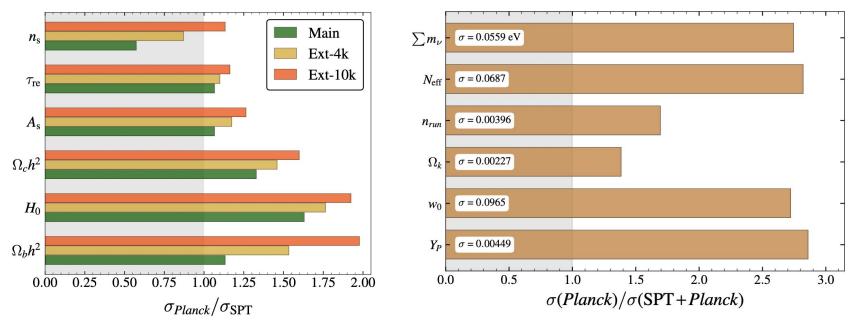
(at 90, 150, 220 GHz):

- **2.5, 2.1, 7.6** μK-arcmin in 7 years
- **10, 9, 30** μK-arcmin in 4 years
- 14, 12, 42 µK-arcmin in 1 year

2019

SPT-3G footprint and T Planck 353GHz

2024

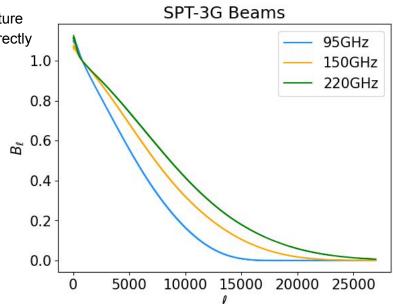

Low noise and low sample variance thanks to the increased fsky

22

Ext-10K forecasts: TT/TE/EE+\$\$

ΛCDM

Extension of ACDM


Gain in cosmological parameters constraints up to: x2 in ΛCDM x3 in extended ΛCDM

Focus on Beams, Calibration, Systematics

Credit Kevin Zagorski, March 2024

Beams: temperature

- Stitching observations of Saturn and bright point sources (AGNs)
 - Outer beam: Saturn observations
 - Pro: high signal-to-noise to resolve the extended beam structure
 - Cons: detectors non-linearity and saturation when pointed directly at the planet. Approaching-only scans used.
 - Inner beam: bright point sources in the CMB field
 - Pro: detectors in linear regime, not saturated
 - Cons: insufficient to resolve the extended beam structure
- Challenges:
 - Stitching radius
 - Time constants:
 - Different scan speed in Saturn and sources observations
 - Different in the various CMB fields
 - Astrophysical backgrounds in the AGN maps
 - Frequency dependence
 - Conversion of the AGN/planet beam to a beam appropriate for the CMB spectrum
- Beam normalization at ell 800 to decouple with absolute calibration
- Covariance matrix: cross spectrum estimation (as described in Lueker 2010) + systematics
- At likelihood level: beam eigenmodes free to vary within the covmat

Beams: polarization

- Lack of bright polarized sources observed deeply to map the polarized beams
- We expect some deviation from the temperature beam if the sidelobes are polarized differently from the main beam
 - polarization beams = 100% polarized main central beam +

X(<100)% polarized diffuse beam sidelobe due to diffraction and scattering

- Fit the sidelobes amplitude parameter $\beta_{\text{Pol}}(\nu)$ at the likelihood level
 - β = 1 if 100% polarization of the sidelobe
 - $0 < \beta < 1$ sidelobes not fully polarized
- Thinking at how we can measure more directly our polarized beam

 $\mathbb{B}_P^{\nu}(\beta_i, \beta_{\text{pol}}^{\nu}) = \mathbb{B}_{\text{main}}^{\nu} + \beta_{\text{pol}}^{\nu}$ (\mathbb{B}_T^{ν}) main

Central beam physical model fit at θ <0.75' (primary illumination, diffraction and frequency dependence)

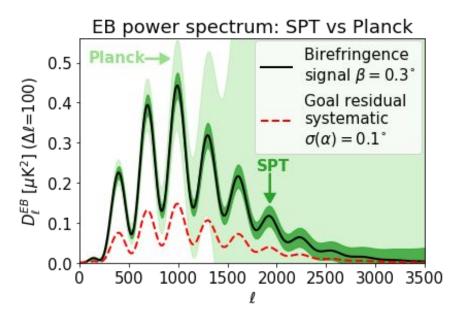
Measured T beam

Sidelobes

Calibration: raw data temperature calibration

- Power to temperature conversion
 - Long HII regions observations (1h20min, once per week) so that every detectors sees the source
 - RCW38, MAT5A, IRAS17258, SgrB2, W28A2
 - Fluxes based on Planck-calibrated SPT-SZ maps
- Correction for changing atmospheric opacity
 - Quick observation of the HII region (ten minutes, before and after the CMB scans)
- Correction for changing detector responsivity
 - Observations of the artificial "calibrator", with the telescope pointed at different elevations, chopped at a certain frequency, for about 1 min
 - "Calibrator" = thermal source (1000K) at the center of the secondary mirror
 - Remaining ~5% cal drift across the subfields

 \rightarrow Relative calibration of subfields

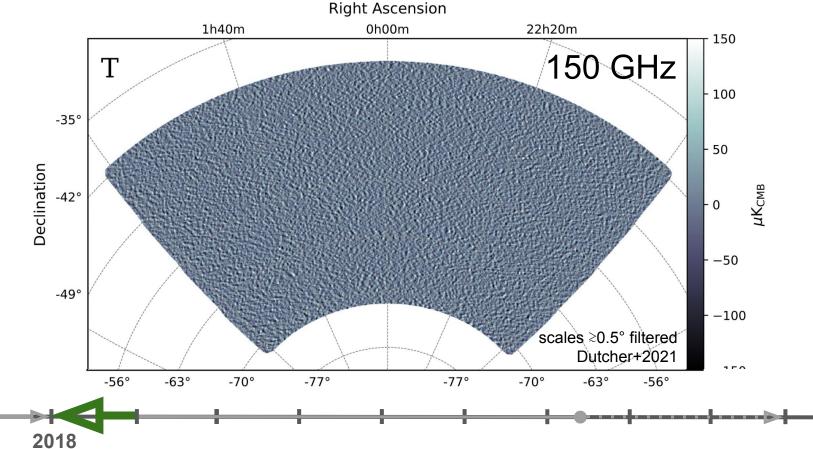

Calibration and systematics: CMB maps

- Temperature calibration (Tcal)
 - External: SPT150 vs Planck143
 - Subfield-based
 - ≤3% recalibration ~0.2% uncertainty
 - Internal: SPT90 and SPT220 vs SPT150
 - Subfield-based
 - $\leq 8(2)\%$ recalibration $\leq 0.2(1.0)\%$ uncertainty at 90(220)
- Temperature-to-Polarization leakage correction
 - Monopole
 - Field or subfield-based
 - Fit the amount of TT and T(Q/U) in QQ and UU
 - ~0.1% recalibration ~0.01%
 - Higher orders
 - At the likelihood level (currently under investigation)
- Polarization angle: EB de-rotation
 - 0.05°–0.10° uncertainty
- Polarization efficiency (Pcal)
 - <u>External</u> field-based: ~10% recalibration ~1% uncertainty
 - Internal field-based: ~0.1(10)% recalibration ~0.2(0.7)% uncertainty at 90(220)

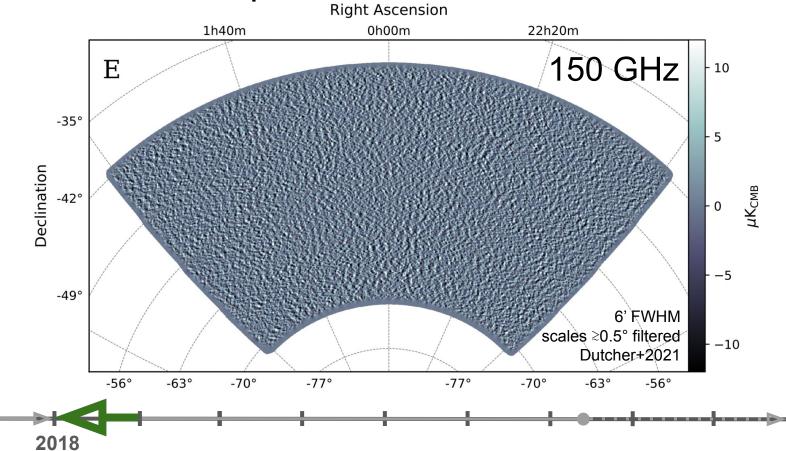
- At likelihood level:
 - Tcal Pcal free to vary
 - Prior width accounts for:
 - SPT cal. uncertainties
 - Planck's 143 cal. uncertainty
 - Tcal:0.0025
 - Pcal:0.00509

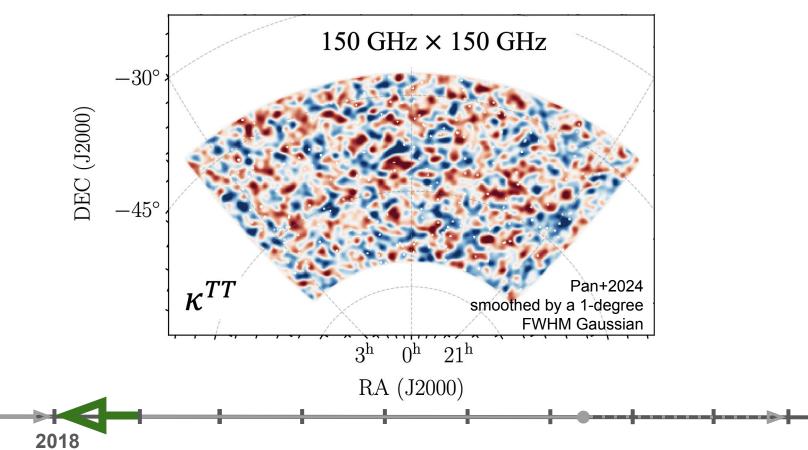
Polarization angle calibration: future prospects

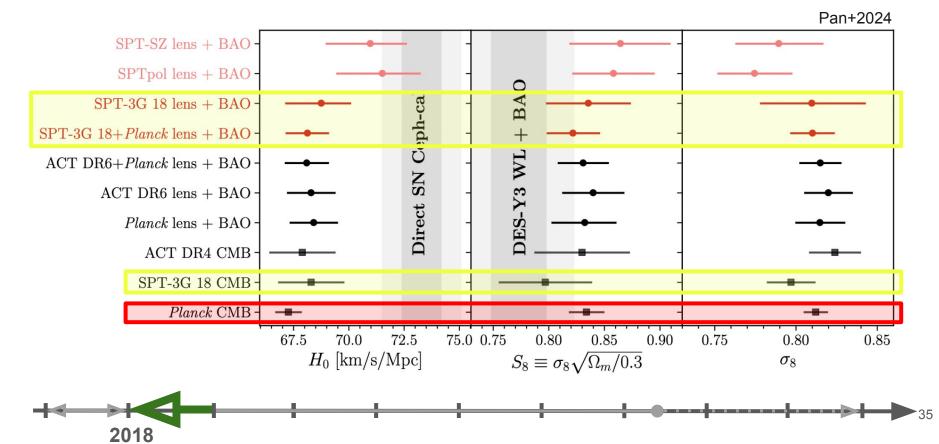
- See A. Foster talk on Tuesday 13:00!
- So far, we have applied EB de-rotation (0.05°–0.10° deg uncertainty)
- Calibration of polarization angle:
 - a. Cross-calibration with BK? Target $\sigma(\alpha)=0.1^{\circ}$, but maybe we can do even better! Let's see at the end of this week...
 - b. Polarized atmosphere? Coerver+2024
 - c. Galactic foregrounds? Minami+2020, Diego-Palazuelos+2022, ...


Conclusions

• SPT-3G is providing a **powerful dataset to test cosmology with the CMB**


- Almost independently from Planck, in a complementary range of multipoles (low:Planck, intermediate-high: SPT)
- Reaching Planck's constraining power very soon
- Going beyond Planck's constraining power by a factor~2 with Ext-10k
- We are **learning lots of lessons** to use the fantastic SPT-3G constraining power
 - Current main limitations: polarized beams, high order T2P leakage, ...
- Absolute calibration still depends from Planck. Can we be more independent?
- Need to develop methodology to calibrate the polarization angle to have access to EB

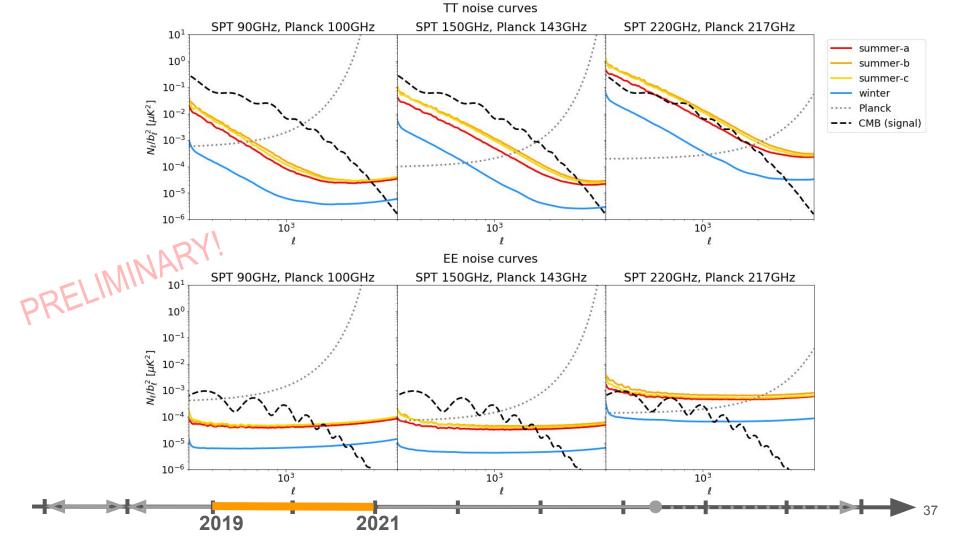

SPT-3G 2018 maps

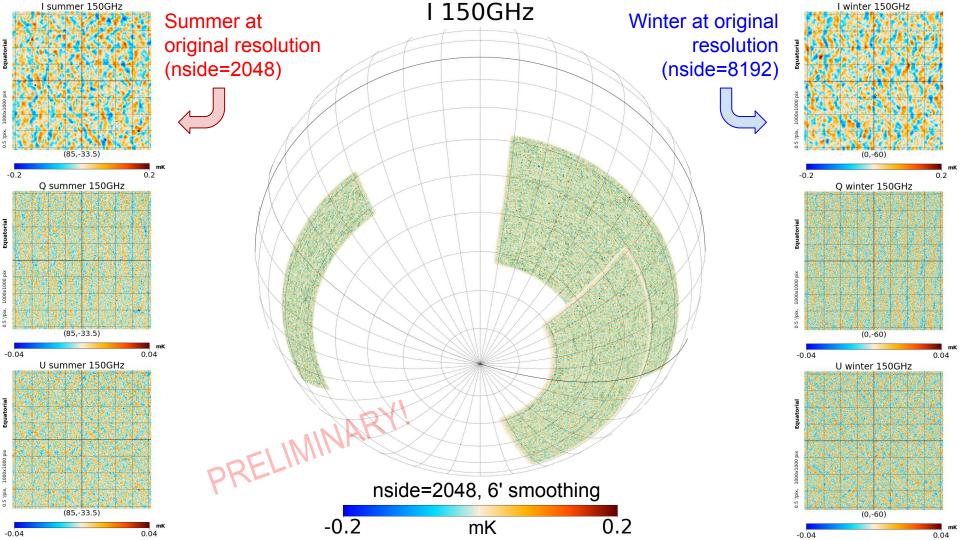

SPT-3G 2018 maps

SPT-3G 2018 maps

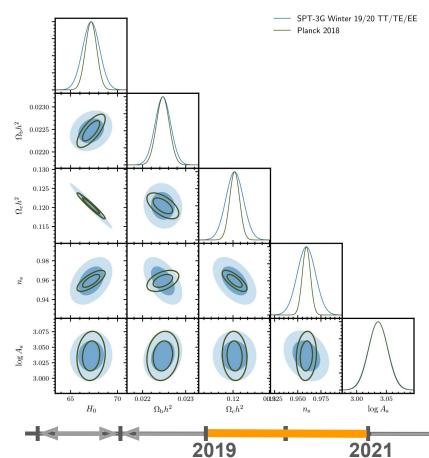
SPT-3G 2018 results

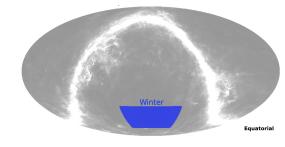
SPT-3G 2018 results


Lensing (arXiv:2308.11608)

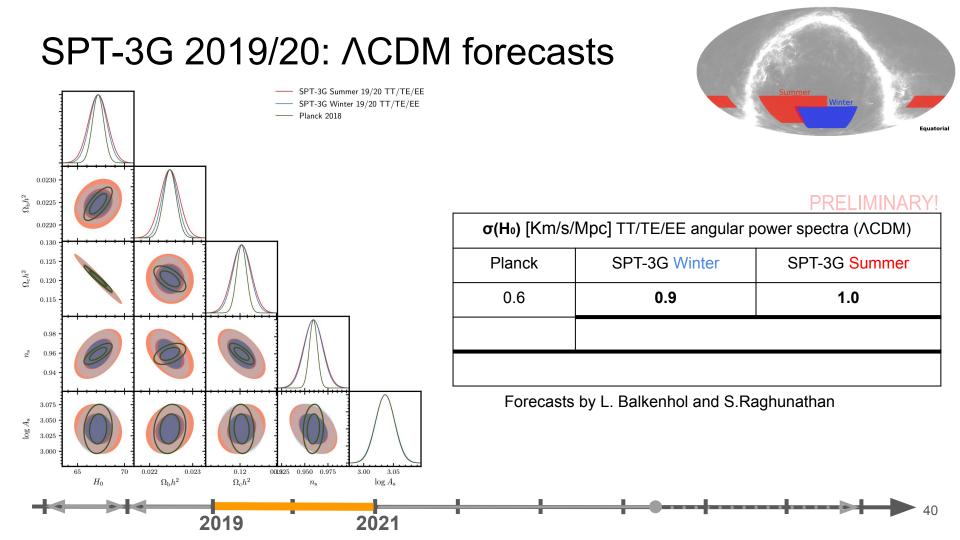

- Very good consistency with **ACDM**
- $\Omega_m \sigma_8$ consistent with Planck
 - σ₈Ωm^{0.25} consistent with other CMB lensing measurements and with Planck 's primary CMB anisotropy
- Lensing amplitude AL
 - consistent with 1
 - compatible with ACT and Planck
- Ho and S8 consistent with the cosmology inferred from Planck primary CMB measurements

Primary CMB TT/TE/EE (arXiv:2212.05642)


- Very good consistency with
 - **ACDM** (deviations < 1σ)
 - Planck, although largely independent
 - ACT (DR4), with similar constraining power
- Hubble constant (Ho) is as low as other CMB measurements
 - \circ ~5 σ tension with cepheid-calibrated local distance ladder measurements (Khalife+2024, <u>arxiv:2312.09814</u>)
- Structure growth parameter (S8) compatible with both low-z data and Planck

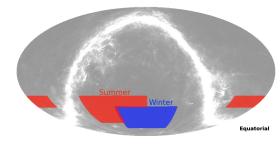


SPT-3G 2019/20: ACDM forecasts



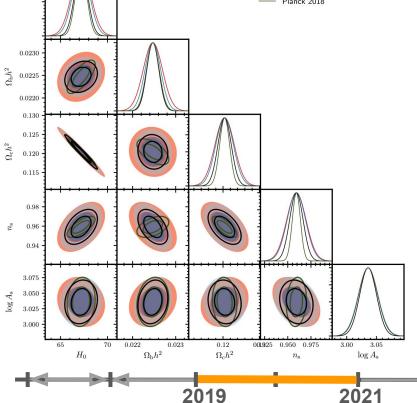
PRELIMINARY!

σ(H₀) [Km/s/Mpc] TT/TE/EE angular power spectra (ΛCDM)			
Planck	SPT-3G Winter	SPT-3G Summer	
0.6	0.9		

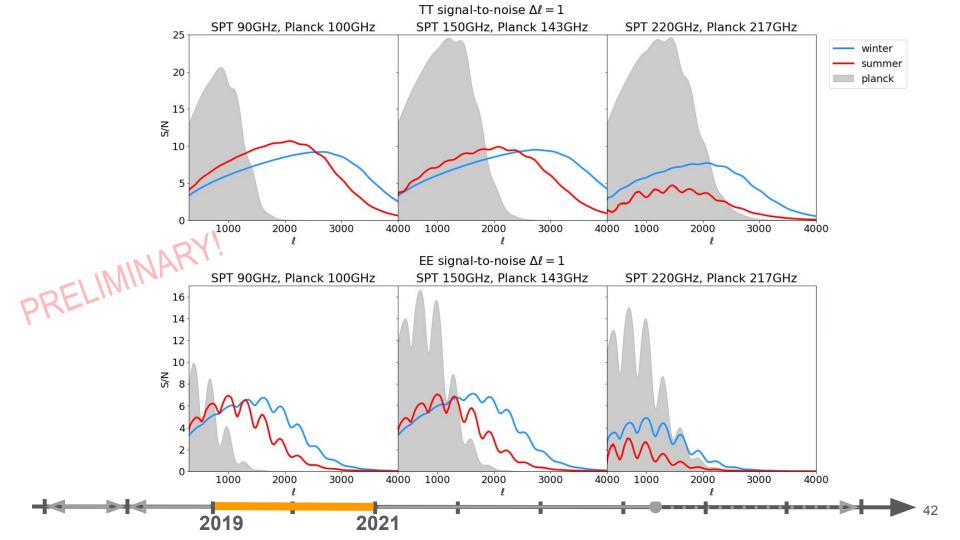

.

Forecasts by L. Balkenhol and S.Raghunathan

Planck 2018

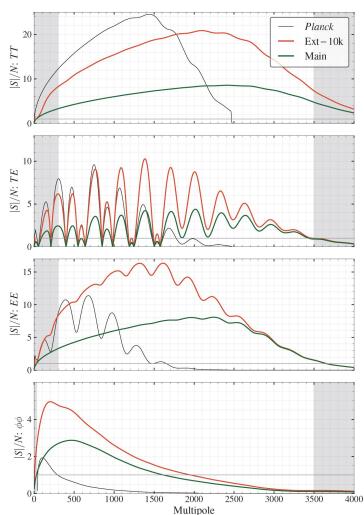

PRFI

σ(H₀) [Km/s/Mpc] TT/TE/EE angular power spectra (ΛCDM)				
Planck	SPT-3G Winter	SPT-3G Summer		
0.6	0.9	1.0		
	0.7			
0.43				


Forecasts by L. Balkenhol and S.Raghunathan

Additional 30–40% improvement of the SPT-3G constraints when including the SPT-3G lensing information (TT/TE/EE+ $\phi\phi$)

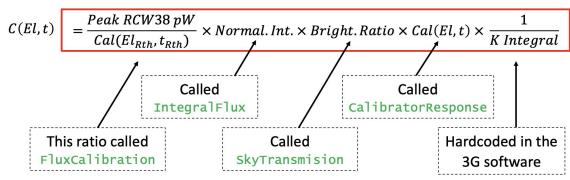
.

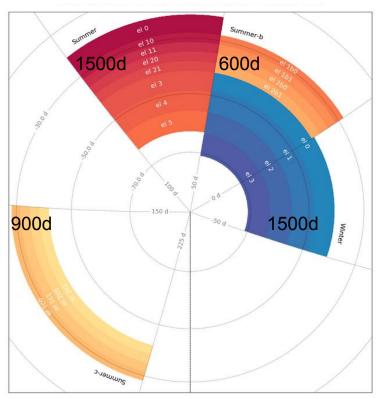


Prabhu et al., <u>arXiv:2403.17925</u>

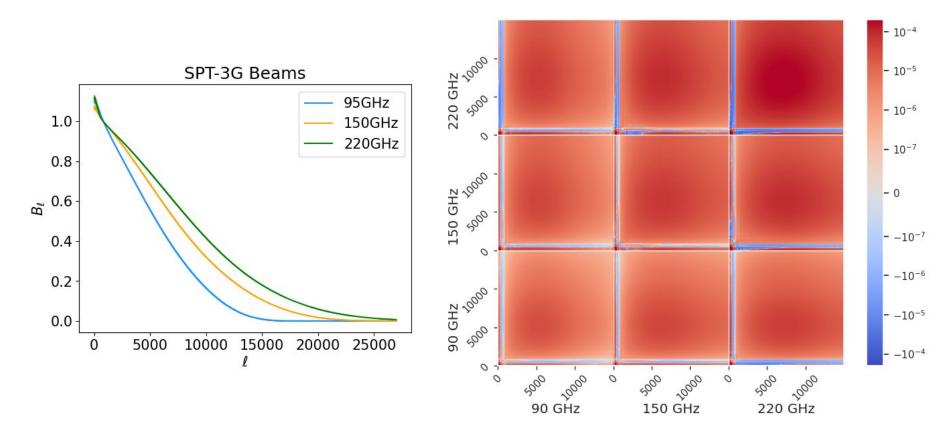
Ext-10K forecasts

- Huge gain in S/N as compared to Planck
 - TT **ℓ** ≥ 1800
 - TE **ℓ** ≥ 700
 - EE **ℓ** ≥ 500
 - $\circ \qquad \varphi\varphi ~L\gtrsim 30$
- Big overlap with other surveys
 - cross-correlations!


SPT-3G calibration


1 per week

Calibration scheme of winter fields applied to summer as well


- Fast Point : deep observations of the calibration source \rightarrow fit the pointing and global pW/K conversion
- elnod: calibrate the phase between current and voltage of TES
 - \rightarrow maximized signal timestream
 - \rightarrow characterization of the atmosphere
- Very Fast Point: guick observations of the calibration source \rightarrow correct for changes in the sky transmission at different times of observation
- Before/during/after each subfield Calibrator: 1 min observations of thermal sources (300 and 1000 K) located at the center of the secondary mirror

 \rightarrow correct for elevation and time dependent responsivity of the TES

Beams covariance

