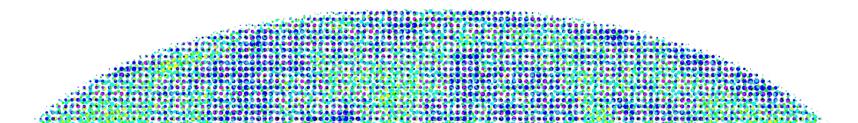
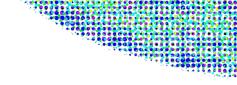
CMBS4

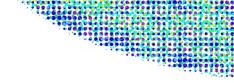

Calibration Challenges for CMB-S4


Johanna Nagy (she / her), Case Western Reserve University

On behalf of the CMB-S4 Collaboration

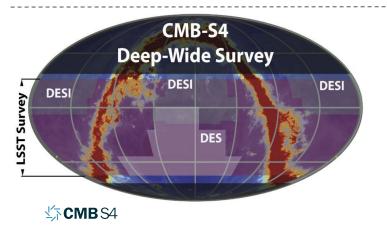
Nov. 4, 2024

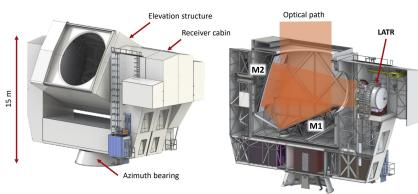
CMB-CAL 2024



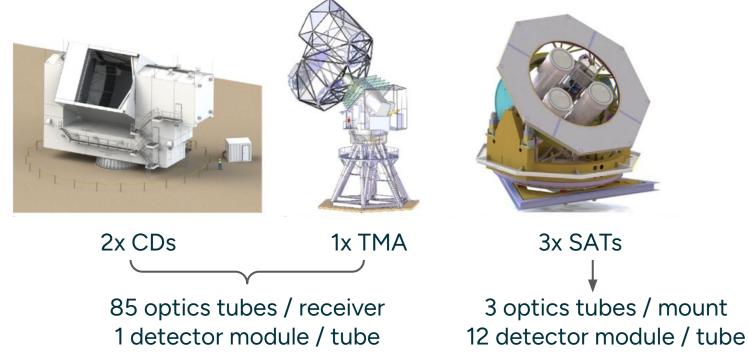
Next generation ground-based CMB experiment, optimized for 4 driving science goals:

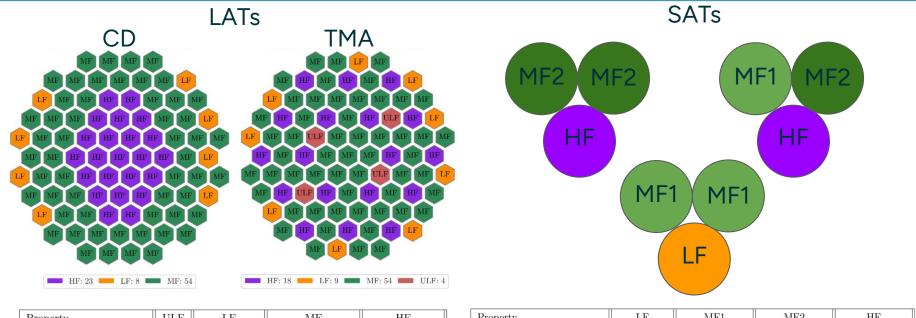
- Search for primordial gravitational waves
 - \circ > 5σ detection if r > 0.003, else r ≤ 0.001 at 95% C.L.
- Probe the dark Universe
 - $\Delta N_{eff} \leq 0.06 \text{ at } 95\% \text{ C.L.}$
- Map matter in the cosmos
 - Detect all $z \ge 1.5$ Galaxy clusters with integrated Compton $Y_{SZ,500} \ge 10^{-12}$ over 50% of the sky and $\ge 10^{-13}$ over 3% of the sky
- Reveal the time-variable mm-wave sky
 - Detect GRB afterglows > 30 mJy over 50% of the sky and > 9 mJy over 5% of the sky at 90 and 150 GHz


- Received strong support in the Astro 2020 decadal survey and the 2023 P5 report
- Jointly supported by DOE and NSF
 - DOE CD-0 project
 - NSF MSRI-1 design award
- Many potential international partnerships have been identified
- Project is currently re-evaluating the baseline design following the NSF decision not to allow planning for new experiments at the South Pole at this time.



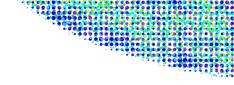
CMB-S4 Instrument


Crossed-Dragone Large Aperture Telescopes


CMB-S4's Former Baseline Design

The Chile-only configuration will not require fewer telescopes or detector modules (It may require more)

Frequency Band Distribution (Former Baseline)


Property	ULF	LF		M	F	HF	
Center frequency (GHz)	20	25	37	92	149	227	286
Fractional bandwidth	0.25	0.26	0.47	0.32	0.28	0.26	0.21
$N_{\rm detectors}$ per optics tube	54	96	96	860	860	934	934

Property	LF		MF1		MF2		HF	
Center frequency (GHz)	25	37	85	145	95	155	227	286
Fractional bandwidth	0.26	0.47	0.24	0.22	0.24	0.22	0.26	0.21
$N_{\rm det}$ per optics tube	288	288	3480	3480	4008	4008	11208	11208

Gallardo et al, 2406.13854

CMB-S4's Challenges

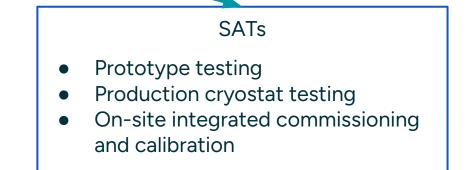

Overall

- Sensitivity
 - > 500,000 detectors observing for 7 years
 - Efficient instrument and survey strategy
- Systematics
 - Careful instrument design and calibration
- Galactic foregrounds
 - \circ $\,$ Many frequency bands from 20 280 GHz $\,$

Calibration

- Number of detectors
- Time or sensitivity needed to calibrate them to CMB-S4's science requirements

Testing and Calibration Plan



Detector modules tested individually to qualify for deployment

- Same tests for both LAT and SAT modules
- Starts early in the project

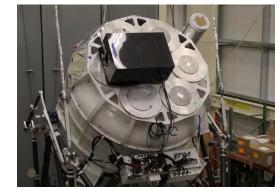
LATs

- Optics tube validation
- Telescope test assembly and on-site ground commissioning
- On-site integrated commissioning and calibration

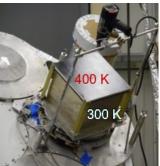
Detector Module Testing

Goal: Qualify for deployment

Measurement All wafers Spot checks	Test Equipment
Detector parameters	Cold load
NET and detector stability	Cold load
Time constants	Chopped source
Observing bandpasses	Fourier Transform Spectrometer (FTS)
Out-of-band leakage	Fourier Transform Spectrometer (FTS) (alt: grill filters)
Polarization response	Chopped polarized source
Beam shape	Beam mapper
Magnetic pickup	Magnetic field generator
RF pickup	RF source

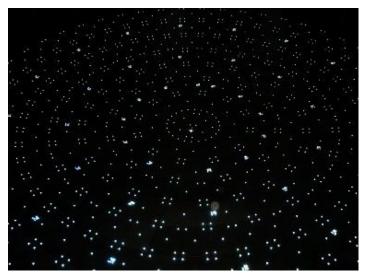


Pre-deployment Optics Tube Validation


All measurements will be done on the high-T_c transitions

Measurement	Equipment
Band properties	FTS or alternative
Pol. angle and effic.	Chopped polarized source
Optical efficiency	Beam-filling thermal loads
Beam maps at window	Thermal beam mapper
Scattering maps	Scattering mapper

Examples from SPIDER See talk by E. Shaw


LAT Telescope Commissioning

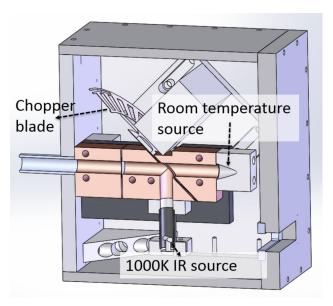
Telescope-only tests before the receiver is installed

Measurement	Equipment
Individual mirror surface	Laser tracker or photogrammetry
Multi-mirror alignment	Holography setup (tower-mounted source, receiver)
Pointing	Star camera

Example from SPT

On-Site Integrated Commissioning

Measurements on the fully integrated telescope + receiver


Measurement	Equipment		
Time constants / Gain	Chopped source coupled through hole in mirror		
Band properties	FTS (spot checks, receiver only)		
Beam sidelobes	Bright sources		

On-Sky Measurements

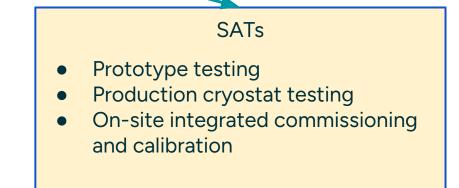
- Beams
- Pol. Angle
- Elevation Nods

⊻⊼CMBS4

Example from SPT

Pan et al, 1805.03219

SAT Calibration Plan

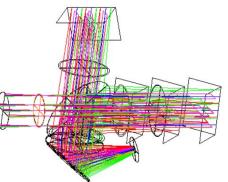

Info from Kirit Karkare, SAT calibration L3 lead, on behalf of the SAT WG

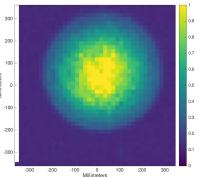
Detector modules tested individually to qualify for deployment

- Same tests for both LAT and SAT modules
- Starts early in the project

LATs

- Optics tube validation
- Telescope test assembly and on-site ground commissioning
- On-site integrated commissioning and calibration

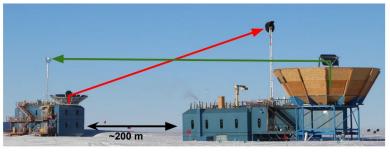

SAT North American Testing (Prototype + Production)


- Developing CMB-S4's equipment designs based on experience with current generation SATs
 - \circ Optical efficiency \rightarrow Aperture-filling thermal load
 - $\circ \quad \text{Beam shape} \to \text{Near-field beam mapper}$
 - \circ Bandpasses \rightarrow Fourier Transform Spectrometer
 - \circ Polarization response \rightarrow Near-field polarization calibrator
 - $\circ \quad \text{Magnetic pickup} \rightarrow \text{Helmholtz coil}$

CMBS4

Beam mapper tested on BICEP Array

On-going FTS design study



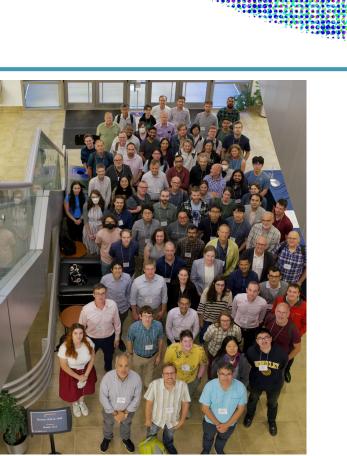
On-Site SAT Calibrations

- Equipment informed by North American measurements and previous generation SATs as much as possible
- Need all equipment from previous slide plus
 - Calibration mast
 - Far-field thermal chopper
 - Far-field flat mirror
 - Amplified microwave source
 - RF sources and monitoring
 - Star camera
- Equipment design will be optimized once Chilean SAT design is finalized
 - HWPs likely to be added to telescope design

Example from BK

Meeting CMB-S4's Calibration Challenges

- Much work still to be done on requirements flowdown, hardware prototyping, and systematics trade offs for different calibration equipment designs
- Similarities between types of measurements for the modules, LATs, and SATs
 - Different measurement requirements
 - Different optical coupling
- Performing calibrations in a timely manner will likely require many copies of hardware
 Could be optimized by frequency band in some cases if desired.
- Calibrate in North America as much as possible, but still lots needed on site
 - Prototype measurements are important



Summary

- CMB-S4 faces unprecedented calibration challenges
 - Number of detectors
 - Sensitivity required for science goals
- Calibration plan is currently being developed as instrument design is being optimized
- Guided by experience from previous CMB experiments

Questions?

CMB-S4 Meeting, Summer 2024

