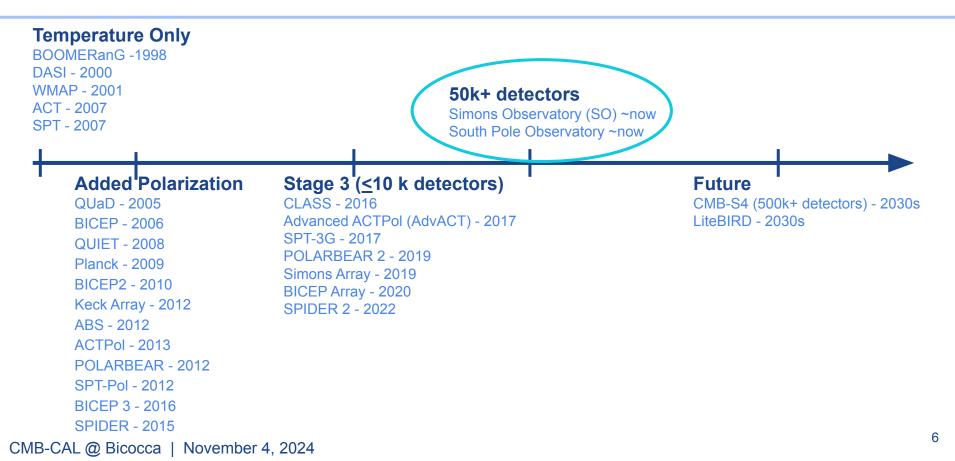
Calibration Methods for Next-Generation CMB Experiments

Sara M. Simon she/her Fermilab November 4, 2024

Photo Credit: Nick Galitzki

- CMB can measure the energy scale of inflation *r*
 - One of the few ways to probe early universe $\sim 10^{-36}$ s after its beginning


- CMB can measure the energy scale of inflation *r*
 - One of the few ways to probe early universe $\sim 10^{-36}$ s after its beginning
- CMB measures the sum of the neutrino masses $(\sum m_v)$
 - Compliment to neutrino oscillation experiments that measure Δm_{ii}^2

- CMB can measure the energy scale of inflation *r*
 - One of the few ways to probe early universe $\sim 10^{-36}$ s after its beginning
- CMB measures the sum of the neutrino masses $(\sum m_y)$
 - Compliment to neutrino oscillation experiments that measure Δm_{ii}^2
- CMB measures the number of relativistic species (N_{eff})
 - Constrain/probe theories that predict new light particles

- CMB can measure the energy scale of inflation *r*
 - One of the few ways to probe early universe ~10⁻³⁶ s after its beginning
- CMB measures the sum of the neutrino masses $(\sum m_y)$
 - Compliment to neutrino oscillation experiments that measure Δm_{ii}^2
- CMB measures the number of relativistic species (N_{eff})
 - Constrain/probe theories that predict new light particles
- CMB constrains dark matter and dark energy through the growth of structure (σ_8) , the expansion rate (H_0) , and the amounts of dark matter and dark energy
 - Extremely accurate probe of these mysterious dark components
 - Highly complementary to supernovae and large-scale structure studies

CMB-CAL @ Bicocca | November 4, 2024

Current State of the Field

Sensitivity Alone is Not Sufficient

- As sensitivity increases so does our susceptibility to systematic effects
- Science achievable will depend on how well we model and mitigate systematic effects
 - Improved simulations to inform instrument design and removal in analysis
 - Improved calibration to characterize instrument and remove systematic effects

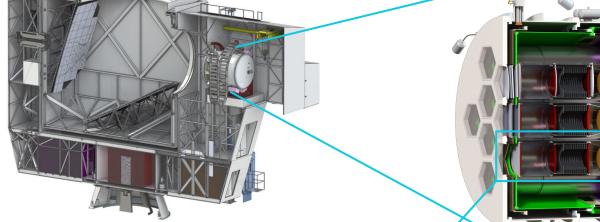
SO's sensitivity is a unique opportunity to develop and demonstrate new calibration methods and technologies for current and future applications

Simons Observatory

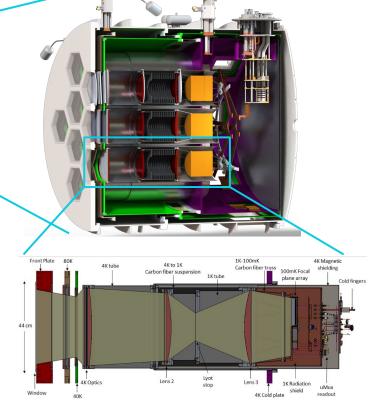
- Located at an elevation of ~5200 m in the Atacama Desert in Chile
- Multichroic cameras 27/39 GHz, 90/150 GHz, 220/280 GHz
- SO Nominal: 60,000+ detectors at ~100 mK
 - Also SO: UK, SO: Japan, and Advanced SO on the horizon \rightarrow **120k+ detectors**

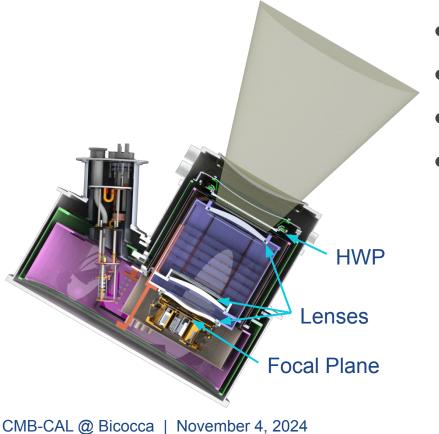
Small Aperture Telescopes (SATs):

- Three ~0.5 m refractive telescopes
- Measure/constrain primordial B-mode

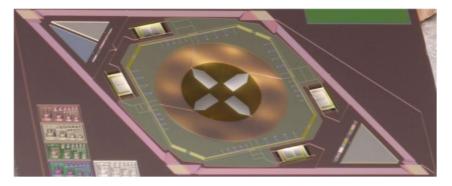

CMB-CAL @ Bicocca | November 4, 2024

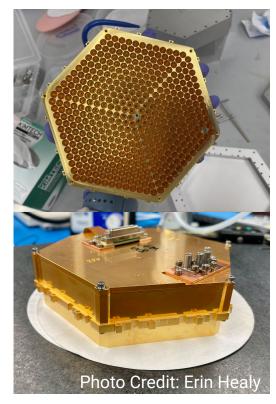
Large Aperture Telescope (LAT):


- One ~6 m crossed-Dragone telescope with 7 optics tubes
- Small angular scale science


Large Aperture Telescope

- 6 m Crossed-Dragone
- 1.4 arcmin beam full width at half maximum (FWHM) at 150 GHz
- 1.3° field of view (FOV) per optics tube, 7.8° FOV total


Small Aperture Telescopes



- 3-lens refractive design
 - 17 arcmin FWHM at 150 GHz
- FOV=35°
- Polarization modulation with a continuously rotating, cryogenic half-wave plate (HWP)
 - Polarization modulation mitigates atmospheric noise, systematic effects, and instrumental polarization leakage
 - Can be used to calibrate and characterize instrument→ time constants, data selection, monitor gain

Detector Modules

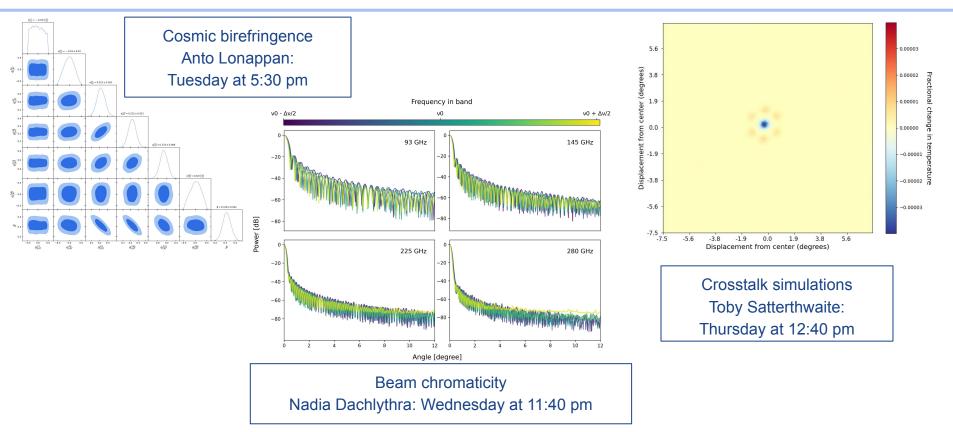
- Feedhorn-coupled orthomode transducers (OMTs) for most modules → beam defined by feedhorn
- Transition-edge sensors (TESes) with ~160 mK transition
- 4 detectors/pixel: 2 orthogonal polarizations for 2 bands
- Read out with µMUX ~1000 detectors/line

CMB-CAL @ Bicocca | November 4, 2024

SO Nominal Science Forecasts

Parameter	Current Best	SO Baseline	Method
$\sigma(r)$	0.03	0.003	BB + ext delens
$\sigma(N_{eff})$	0.2	0.07	ТТ/ТЕ/ЕЕ + <i>кк</i>
$\sigma(\sum m_{\nu})$	0.1 eV	0.04 eV	кк + DESI-BAO
σ(H ₀)	0.5	0.4	TT/TE/EE + κκ
σ(σ ₈) (%)	7%	2%	кк + LSST-LSS + DESI-BAO

Plus: 20,000+ galaxy clusters

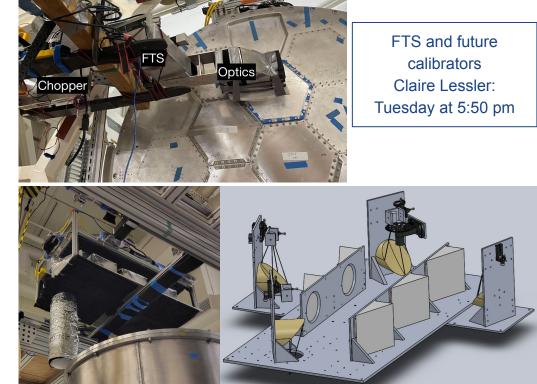

The Simons Observatory Collaboration, 2018

Key Calibration Challenges

- Unprecedented sensitivity → higher susceptibility to systematic effects
- Different calibration requirements and methods between LAT and SATs
- $60k+detectors \rightarrow variability$
- Balancing calibration time with observation time
- Feedback loop with analysis and calibration observations

SO is developing and using detailed simulations to understand calibration requirements SO uses a conservative calibration approach with multiple methods to reduce risk SO is developing novel techniques in tandem with demonstrated methods

Simulation Development


Requirements

- Center frequency requirement on order ~0.5-1% for 90/150 GHz with less stringent constraints once marginalized (<u>Abitbol, et al., 2021</u>, <u>Giardiello, et al., 2024</u>)
- Expect that Sunyaev Zel'dovich (SZ) cluster science case requirements may be more stringent → detailed studies underway (S. Sutariya)

Key Challenges: Reaching required limit with hardware + number of detectors

Bandpass Calibration

- Dedicated campaigns with Fourier Transform Spectrometer (FTS) → move to fully reflective optics to further reduce uncertainty to required level
 - During season with poor observing conditions
- Radiometer and weather station (continuous) → characterize atmospheric effects
- Developing new technology with frequency-selectable laser source (FLS) → higher frequency resolution, more direct measurement

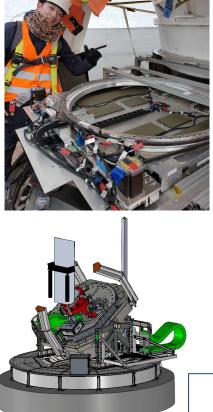
FLS measurements, Shreya Sutariya: Thursday at 12 pm

CMB-CAL @ Bicocca | November 4, 2024

Polarization Angle

Requirements

- SATs: 0.4° for 90/150 GHz (<u>Abitbol, et al., 2021</u>)
 - When using half-wave plates (HWPs), time constant uncertainties contribute to polarization angle uncertainty
- LAT: 0.25° sufficient (<u>Giardiello, et al., 2024</u>)


Key Challenges: Reaching required hardware levels for SAT + combining methods + few available celestial sources

(Tau A only known to ~0.27°, varies by band [J. Aumont, et al., 2020])

Polarization Angle Calibration

- SATs
 - Time Constants
 - Electrical time constants via bias steps ~hourly
 - Correlate electrical time constants with ~weekly time constant measurements with wire grid
 - Wire grid calibrations ~weekly
 - ~Weekly Tau A observations
 - Annual drone calibration
 - Plate calibrator
 - Self-calibration is an option but sacrifices limits on cosmic birefringence
- LAT
 - ~Weekly Tau A observations
 - Cross-correlation with SATs → developing new technique
 - Exploring new method with polarized starlight (B. Hensley)

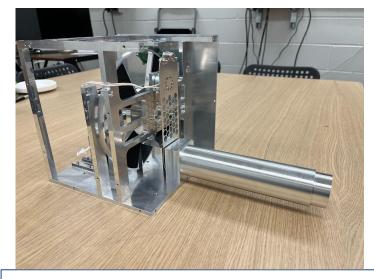
CMB-CAL @ Bicocca | November 4, 2024

Wire grid calibrator Hironobu Nakata: Tuesday at 12:40 pm

HoverCal + POLOCALC Rolando Dünner: Tuesday at 11:40 am

Plate calibrator - Erin Healy

LAT Time Constant Calibration


Requirements

- Requirements depend on time constant → faster detectors can have higher uncertainty
- Power spectrum constraints set requirement at <10% for target SO time constants (S.M. Simon & E. Calabrese)

Key Challenge: Understanding uncertainties from correlation of electrical/optical time constants

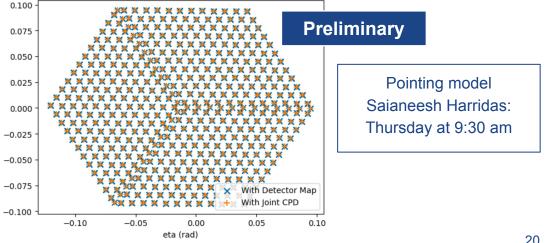
CMB-CAL @ Bicocca | November 4, 2024

~Hourly electrical time constants via bias steps correlated with optical time constants from stimulator every few hours when rebiasing

Stimulator calibrator Yudai Seino: Tuesday at 10:10 am

Pointing Calibration

Requirements


- LAT: <15 arcsec offset pointing
- SATs: <20 arcsec RMS (G. Teply & J. Didier)

Key Challenges: Availability of sources early in project + getting pointing observations at the same azimuths and elevation as observations

SATs

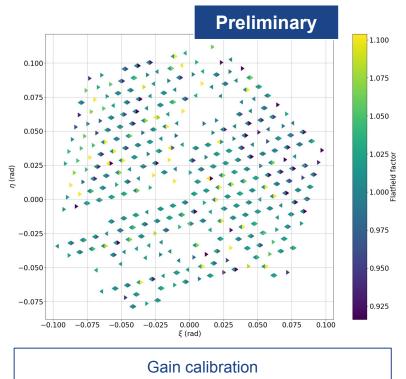
- Moon observations
- Planet observations
- Star camera (as needed)
- I AT
 - Point sources
 - Planet observations

CMB-CAL @ Bicocca | November 4, 2024

Requirements

- SATs: 2.8% for 90/150 GHz (<u>Abitbol, et al., 2021</u>)
- LAT: 1% gain uncertainty has a non-negligible effect, marginalization can help reduce requirement (<u>Giardiello, et al., 2024</u>)

Key Challenge: Reaching levels required for LAT science


Responsivity Calibration

• SATs

- Jupiter, Venus, and Saturn observations
- Second harmonic of the half-wave plate (HWP)
- Relative responsivity from wire grid
- Calibration with Planck/WMAP

• LAT

- ~Hourly measurements with stimulator
- Uranus observations
- Calibration with Planck/WMAP

Kevin Crowley : Tuesday at 9:50 am

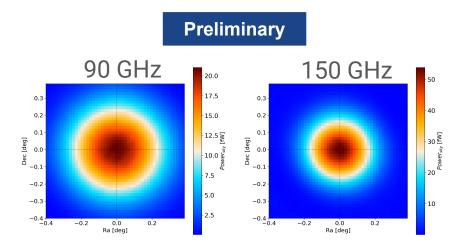
Beams

Requirements

- Depend on potential variations in beam (e.g. day/night, azimuth/elevation dependence)
- LAT: Primarily set by uncertainty in window function of beams
- SATs: Polarized beam is critically important→ detailed studies underway on polarized beams (L. Saunders) and frequency-dependence (N. Dachlythra)

Key Challenges: Effectively tracking and building up a beam model over time + Understanding variation + Combining different observations to fully characterize beam + Limited source availability (SAT) + Balancing CMB field priorities

CMB-CAL @ Bicocca | November 4, 2024


Beam Calibration

• SATs

- Jupiter, Venus, and Saturn observations
- Annual drone measurements (polarized beam)
- Hybrid Moon (<41°)/Sun (>41°) far sidelobe observation campaign

• LAT

- Uranus and Neptune for the main beam
- Saturn, Jupiter, and Venus for the mid-range beam
- Moon/Sun for far sidelobes

SAT calibration measurements Samuel Day-Weiss: Thursday at 9:50 am

- Calibration and systematic mitigation will determine experiment performance in current and future generations of CMB experiments
- SO is using both novel simulations and instrumentation to improve calibration and systematic mitigation
- SO commissioning and observations are now underway → Beginning to test full calibration plan and new calibration techniques
- The coming years will include new and exciting results on the performance of these new calibration technologies and methods in addition to SO science results

SO will serve as a key testbed for calibration methods and technologies in the coming years → Critically important for future CMB projects like CMB-S4

Thank You

CMB-CAL @ Bicocca | November 4, 2024