

Calibration of the GroundBIRD Telescope Current Status and Future Prospects

Miku Tsujii on behalf of the GroundBIRD collaboration

Outline

- GroundBIRD experiment
- Status report of the on-site calibration
 - Performance verification of detectors at a laboratory
 - Pointing calibration using Moon observation data
 - NEP and beam pattern
 - Polarization angle calibration

Summary

Location of GroundBIRD

Ground-based CMB polarization observation experiment

International collaboration with Japan, Spain, Korea, the Netherlands, and the UK

2024/11/4

GroundBIRD experiment

Scientific objective of GroundBIRD

2024/6/18

GroundBIRD experiment and our science target

4

GroundBIRD telescope

Strategy against atmospheric fluctuations

 \rightarrow mitigating 1/f atmospheric fluctuation

40% of full-sky observations!

2024/11/4

GroundBIRD

GroundBIRD experiment

GroundBIRD and QUIJOTE alliance

- GroundBIRD's observation frequencies: 145GHz and 220GHz
- We plan to combine data from the QUIJOTE telescope to achieve accurate foreground removal.

QUIJOTE (11, 13, 17,19, 30, 40 GHz)

GroundBIRD

2024/11/4

Galactic foreground signals

Teide observatory: https://www.iac.es/

The GroundBIRD forecast paper K. Lee, et al., (2021) ApJ 915 88 Data accumulation for 3 years leads sensitivity of $\sigma(\tau) \sim 0.01$

GroundBIRD experiment

6

Outline

GroundBIRD experiment

- Status report of the on-site calibration
 - Performance verification of detectors at a laboratory
 - Pointing calibration using Moon observation data
 - NEP and beam pattern
 - Polarization angle calibration

Summary

We installed the full set of detectors in 2023!

To achieve rapid rotation scanning performance compatible with diffraction-limited, we employ Microwave Kinetic Inductance Detectors(MKIDs) with time constants on the order of 10 µs.

Designed @Tohoku(Tanaka) Fabricated and evaluated performance @TU Delft and SRON (Karatsu, Tanaka, Baselmans)

145 GHz 6 array × 23 kids 220 GHz 1 array × 23 kids

2024/11/4

Optical efficiency

8

MKIDs performance at lab measurement

Blackbody source 30K

TOD with an MKID: blackbody temperature is changed

Lab measurements were done @TU Delft and SRON

9

Optical efficiency 1.0 expected efficiency 9.0 1.75 data ([№]H 1.50)) 1.25 optical e а Ц 1.00 0.75 0.0 0.50 16 5 11 12 Δ KIDID $\nu P_{\rm rad}(1 + \eta_{\rm opt}n) + 4\Delta P_{\rm rad}/\eta_{\rm pb}$ NEP = $\eta_{\rm opt}$

Credit: T.Tanaka

Optical efficiency

2024/11/4

Pointing calibration using the Moon

Beam centered map from the Moon observation

Each detector's response has been normalized.

dBIRD.

's visible size.

Detail: Y. Sueno, et al., (2024) PTEP

nethod using the Moon, applicable to small

nting calibration using the Moon observation data

Pointing calibration using Moon

The Moon's brightness temperature from the Earth

(Fig6, 9, and 14 Y. Sueno, et al., (2024) PTEP)

11

Convolved brightness distribution with the beam modeled using the simple 2D Gaussian

Example of the Moon observation model

Residuals of the calibrated pointing

- Two months of observation data
- Scan at 10RPM
- Elevation at 70 degrees

\rightarrow Extracted Moon positions for each detector

Successfully achieved an uncertainty of $3.3^{'}$ including all systematic uncertainties.

We are continuing the Moon observation for pointing calibration with the new detector setup!

2024/6/18

Pointing calibration using the Moon observation data

Beam pattern

BEAM pattern modeling by GRASP simulation GRASP: General Reflector Antenna Solware Package

Beam pattern and NEP analyses using Jupiter observation are ongoing!

An image of Jupiter captured map

145 GHz MKID smoothed with a FWHM of ~0.6°

Polarization Calibration using Sparse Wire grid ¹³

- Challenge: Using celestial objects as polarization calibrators is hard for a small aperture telescope.
- Solution: Sparse wire grid
- Advantage: Calibration is possible anytime

Created polarization along the direction of the wire

Polarization response measurement for wire direction

- Single polarized double-slot antenna

 To measure Stokes parameters Q and U, the antenna is oriented in 4 directions

Progress in polarization angle calibration

2024/11/4

Polarization Calibration using Sparse Wire grid 14

Before constructing the instrument, we conducted a verification test using a simplified setup to confirm if polarization signals can be measured as expected.

Location: on the baffle Diameter: 0.1mm Material: Wolfram No. of wires: 50 Intervals: 16 mm 2 seconds integration

The frame was rotated by 45 degrees each time during data acquisition, with the time recorded.

This is a test to ensure that the signal is visible. The accuracy is about $\pm 4^{\circ}$.

Polarization Calibration using Sparse Wire grid $^{\rm 15}$

Based on these results,

we are currently developing a high-precision polarization angle calibration device!

2024/11/4

Where should we install the wire grid?

3D model of the GroundBIRD telescope

Polarized signals come from the wires in all 360 degrees. However, only the light spread to about the beam width can be detected. **Sparse Wire Grid**: A device with metal wires stretched at intervals larger than the wavelength.

R

- Aim: calibrate the polarization angle using the same light path as the observation.
 - \rightarrow Focus on a mirror utilization rate.

Wire Beam Width Conditions for using the entire surface of a mirror

$$R > \frac{\Delta s}{\text{Beam width}}$$

(Very rough calculation)

16

→ Must be placed as far away as possible. But still near the field.

2024/11/4

Progress in polarization angle calibration

The new wire grid calibrator(Under consideration) 17

Requirement

- Accuracy of 0.5 degrees or better
- Wire spacing of 15mm
- Must be compatible with the current GroundBIRD system
- Install as far away from the mirror as possible.

The absolute angle will be measured using a tilt sensor.

<u>Under consideration</u>

2024/11/4

The new wire grid calibrator(Under consideration) ¹⁸

Frame deflection

2024/11/4

- Simulated with Fusion360
- Each wire tension:10 N
- Deflection at most 0.2 mm

Fixing method and wire tension

Simple installation method is needed for efficient work at the observatory -> Adopted guitar-like mechanism : guitar pegs and tuner Benefit: Ease of setup and adjustment

Guitar pegs

Relationship between wire tension and frequency.

$$T = 4\rho L^2 f^2$$

T : Wire tension ~
ho~ : The line density

 $f\,$: frequency $\,$ $\,$ $L\,$: The length of the string

Progress in polarization angle calibration

Summary

- GroundBIRD is a ground-based CMB experiment specifically designed to measure at large angular scales.
- The full set of MKID arrays was successfully installed in May 2023.
- Telescope calibration in progress
 - NEP @lab measurement: done and got the same result as expected.
 - * Pointing calibration using the Moon with uncertainty of 3.3
 - * Polarization calibration with sparse wire grid
 - Tests with a simplified setup were successful.
 - The final version of the wire grid is under construction.
 - Plan to perform far-field polarization angle calibration using an artificial source
 - launched by the drone with Milano- Bicocca team!

GroundBIRD observations

The observed time so far ~35 days from new detectors (~June 2023)

Cumulative Percentage of Observation Size and Cumulative Observed Days Over Time Cumulative Percentage of Observation Long-term observations initiated 60 10 0 **Future prospects** 2024-01 2024-03 2023-07 2023-09 2023-11 2024-05 2024-09 2024-11 2024-07 Time (Date) On going On going Three years observation **Final result** Calibration 2024/11/4