BK Polarization Calibration and Frequency Bandpass measurements

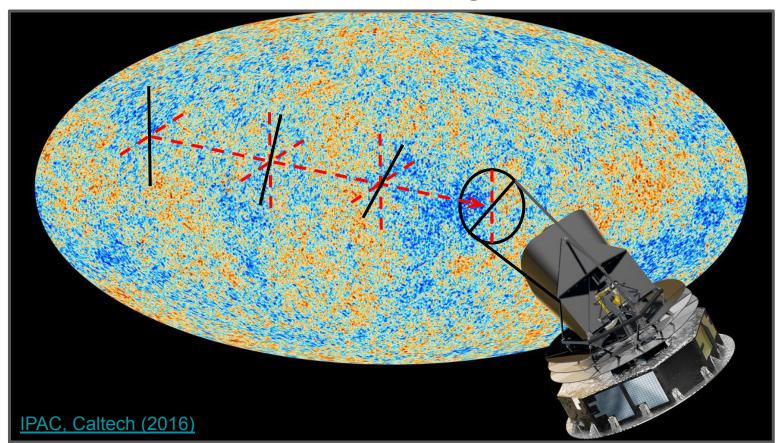
James Cornelison CMB-CAL 2024 5 Nov 2024

Summary

Polarization Calibration

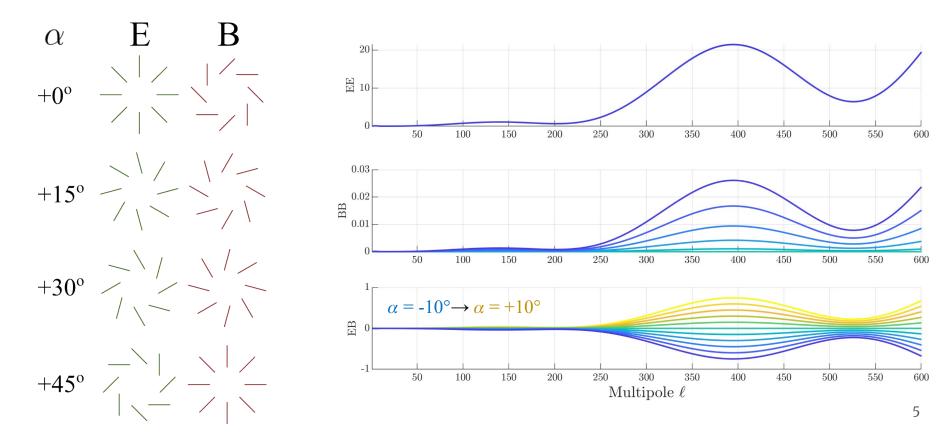
- Motivation
- Calibration
- Instrumental Error
- CMB Uncertainties
- Impact on *r*

Bandpass Results


Paper now on arXiv! [2410.12089]]

Motivation

- Makes us sensitive to potential signals of EM parity violations (aka Isotropic Cosmic Birefringence)
- Understand (or mitigate) systematics on r
- Enables EE abscal
- Understand divergences between T and Q beams


How is the CMB affected by Cosmic Birefringence?

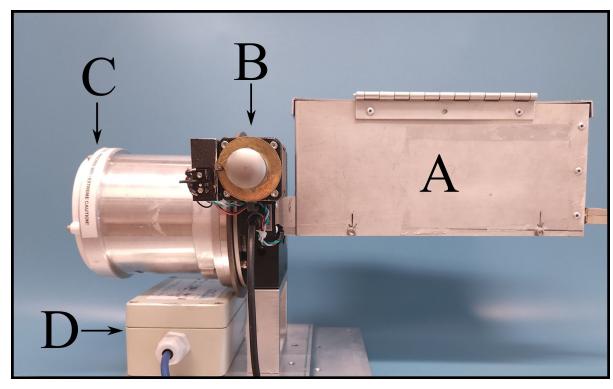
Linear polarization rotates as it travels through spacetime

How is the CMB affected by Cosmic Birefringence?

E rotates into B and vice versa. E and B correlations become non-zero!

Characterizing **BICEP3** Performance

- Large, flat, aluminum mirror redirects the view onto the horizon (like a periscope!)
- Calibrators are installed on masts



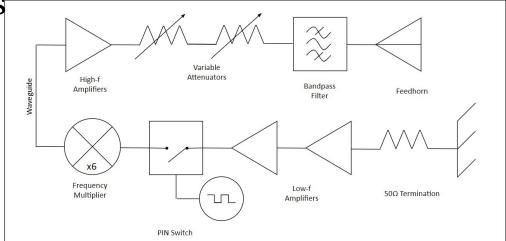
The Rotating Polarized Source (RPS)

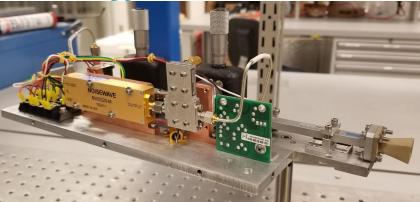
What calibrator are we using to measure angles?

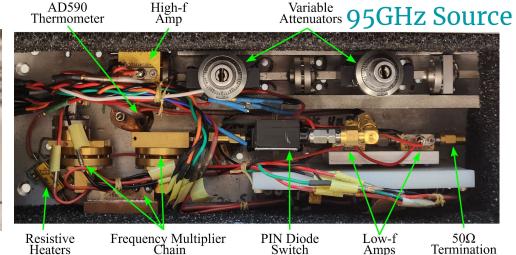
- A. Broad Spectrum Noise Source
 - a. 95GHz source, instantaneous 10GHz band
- B. Rotation Stage
 - a. Rotates source to various pol angles
 - b. σ as good as O(0.01°)
- C. Wire Grid Polarizer
 - a. Establishes pol angle of source
- D. Tilt Meter
 - a. Registers grid angle WRT gravity
 - b. σ~0.01°

The Rotating Polarized Source (RPS)

What calibrator are we using to measure angles?


- A. Broad Spectrum Noise Source
 - a. 95GHz source, instantaneous 10GHz band
- B. Rotation Stage
 - a. Rotates source to various pol angles
 - b. σ as good as O(0.01°)
- C. Wire Grid Polarizer
 - a. Establishes pol angle of source
- D. Tilt Meter
 - a. Registers grid angle WRT gravity
 - b. σ~0.01°


Broad Spectrum Noise Sources


"Quasi-Thermal"

- Instantaneous band
- Flat spectrum (in T_{RI})
- Linearly polarized
- Electrically chopped
- ~70dB dynamic range

35GHz Source

Calibrating the calibrator

How do we know the polarization orientation of the RPS?

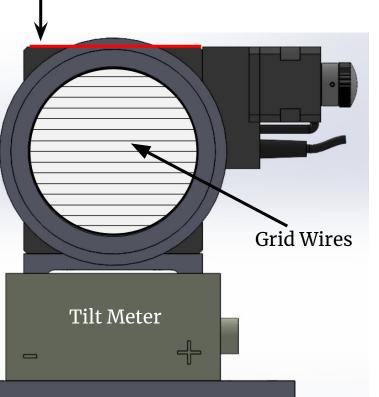
- Reference Surface Grid Wires Tilt Meter

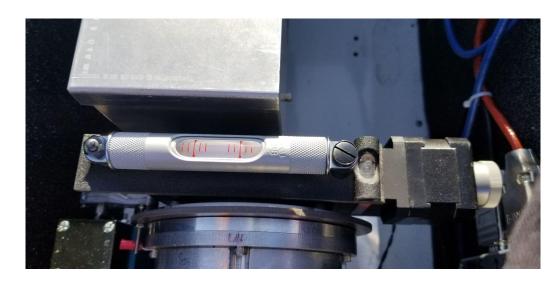
- Register the wire grid orientation to gravity
- Wire grid WRT reference surface by sighting wires on knee mill
- Tilt Meter to reference surface using a precision level

Calibrating the calibrator

How do we know the polarization orientation of the RPS?

- Reference Surface Grid Wires Tilt Meter

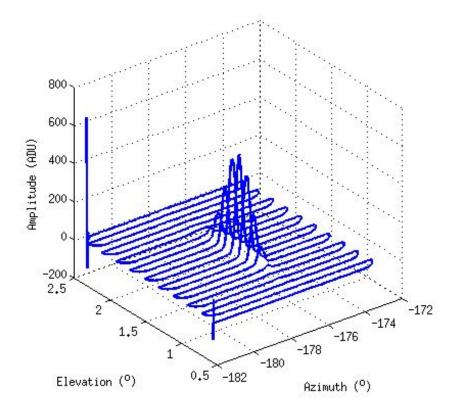




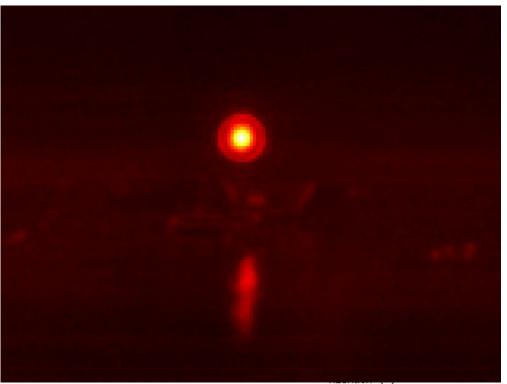
Calibrating the calibrator

How do we know the polarization orientation of the RPS?

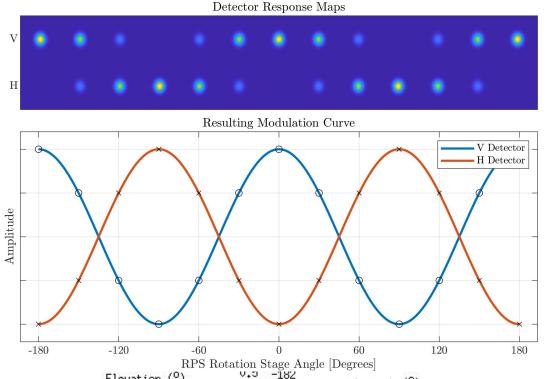
- Reference Surface


How do we get angles from observing the RPS?

- Observe RPS with telescope by rastering back and forth in azimuth & elevation
- Map detector response at 13 different RPS angles
- Amplitude vs. RPS angle is a **modulation curve**
- Multiple curves for each ~2000 BICEP3 detectors = ~25 days of observing


How do we get angles from observing the RPS?

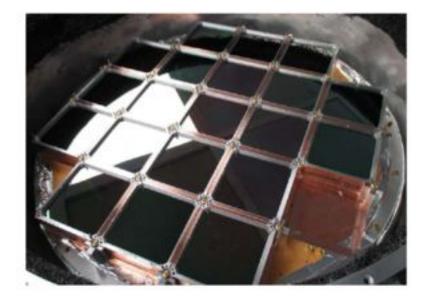
- Observe RPS with telescope by rastering back and forth in azimuth & elevation
- Map detector response at 13 different RPS angles
- Amplitude vs. RPS angle is a **modulation curve**
- Multiple curves for each ~2000 BICEP3 detectors = ~25 days of observing


How do we get angles from observing the RPS?

- Observe RPS with telescope by rastering back and forth in azimuth & elevation
- Map detector response at 13 different RPS angles
- Amplitude vs. RPS angle is a **modulation curve**
- Multiple curves for each ~2000 BICEP3 detectors = ~25 days of observing

How do we get angles from observing the RPS?

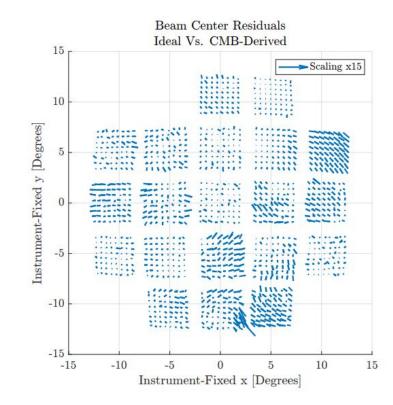
- Observe RPS with telescope by rastering back and forth in azimuth & elevation
- Map detector response at 13 different RPS angles
- Amplitude vs. RPS angle is a modulation curve
- Multiple curves for each ~2000 BICEP3 detectors = ~25 days of observing


Elevation $(^{0})$

Azimuth (°)

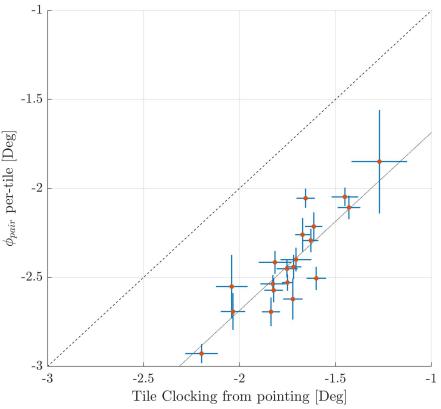
Calibration Validation

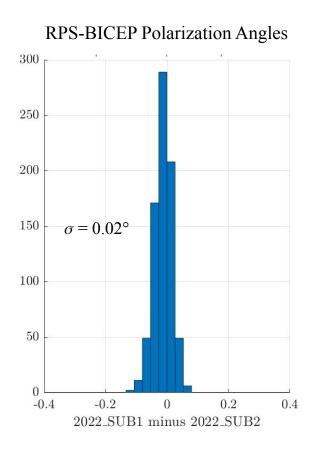
How can the data validate our analysis?

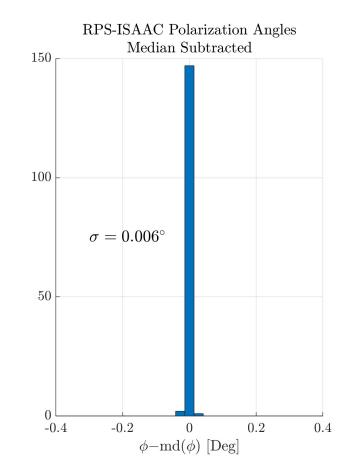

- We know the actual pointing of our detectors from the CMB
- Orientation of the tiles by comparing ideal to CMB-derived pointing
- Overall pol angle tiles matches rotation of tiles from pointing (with an extra offset)

Calibration Validation

How can the data validate our analysis?


- We know the actual pointing of our detectors from the CMB
- Orientation of the tiles by comparing ideal to CMB-derived pointing
- Overall pol angle tiles matches rotation of tiles from pointing (with an extra offset)


Calibration Validation


How can the data validate our analysis?

- We know the actual pointing of our detectors from the CMB
- Orientation of the tiles by comparing ideal to CMB-derived pointing
- Overall pol angle tiles matches rotation of tiles from pointing (with an extra offset)

Statistical Uncertainty

20

Systematic Uncertainty

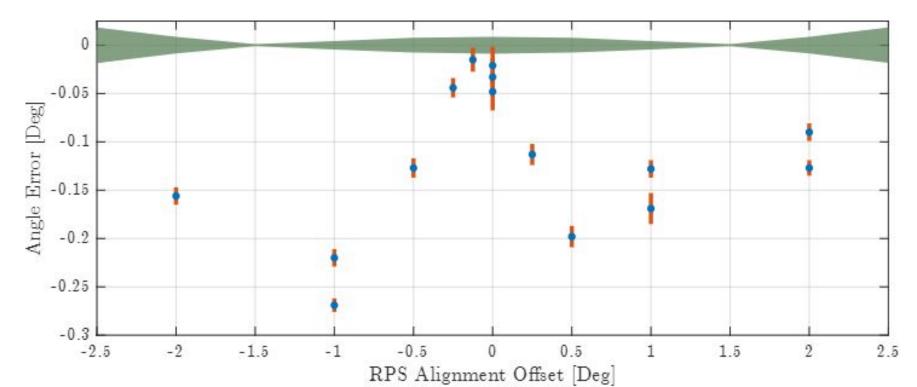
• Considered many different sources of systematics

 Most systematics are well-understood and within nominal limits

• Ultimately limited by alignment errors discovered on the benchtop

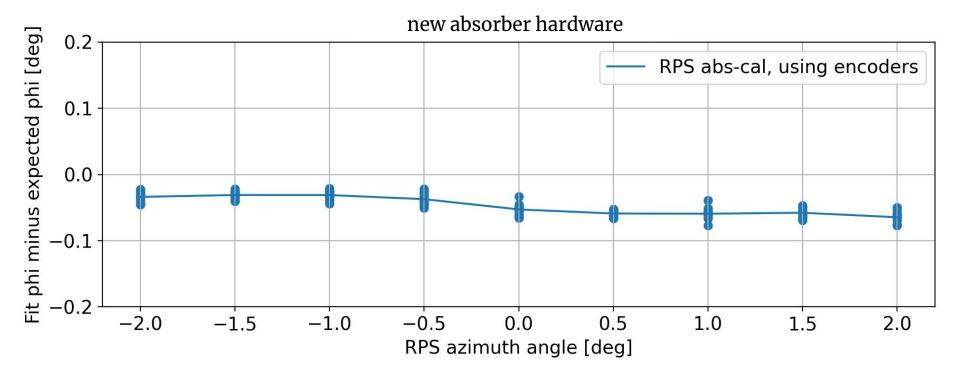
Systematic Uncertainty				
Category	Amplitude	$\sigma(\phi_d)$		
RPS Calibration				
Stage Repeatability	0.002°	$< 0.001^{\circ}$		
Homing Uncertainty	0.005°	0.005°		
Tilt Calibration	0.014°	0.014°		
Motor Backlash	0.06°	0.060°		
Pointing Model				
FPU Angle	0.012°	0.012°		
Modulation Curve				
Obs-to-Obs Fluctuations	0.042°	0.042°		
Alignment Error (Model)	$1^{\circ}Az/5^{\circ}El$	0.035°		
Alignment Error (Measured)		0.300°		
Total Uncertainties	Lower	Upper		
Statistical		0.020°		
Systematic	0.085°	0.309°		
Total Stat.+Sys.	0.086°	0.310°		
Precision goal	<0.100°			

21


Independent Cross Checks

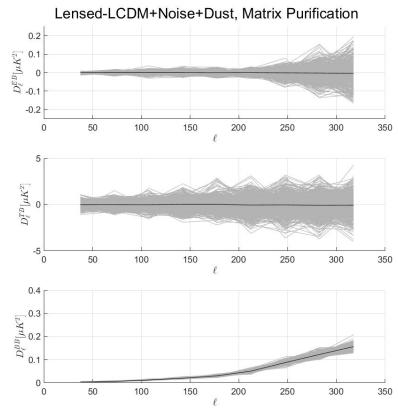
- Using receiver with wire grid+tiltmeter to measure RPS mod curves
- Angle fit from mod curves should equal measured angle of RX's wire grid WRT to gravity
- Is intended to provide strong cross check that we understand end-to-end measurement.

Independent Cross Checks


- Empirical measurements of alignment error much larger than current modelling suggests
- Priors on RPS alignment: 1° Az/2.5° El \rightarrow ~0.3° angle error

23

Independent Cross Checks


We think we understand things now. Stay tuned!

Actual CMB Stuff:

Uncertainty from CMB comes mostly from sims

- Good ol' CMB (LCDM-only)
- Gravitationally Lensed-CMB
- Galactic Dust
- Instrumental Noise
- Various Combinations

CMB Error Budget

Sim Type	Ø [Degrees]	
Noise	0.061	
CMB-only	0.004	
Lensed CMB	0.035	
Dust	0.007	
L-CMB+Dust+Noise	0.078	

• Currently dominated by noise

- Will decrease by integrating more observing years
- \circ Comparable to lensing when including up to Y2023 BICEP3 data! \rightarrow 50% overall improvement

• Next limited by gravitational lensing

• Requires delensing analyses by combining external CMB data

Birefringence Forecasting

- We find that variance on angle is linearly dependent on residual BB (from noise & lensing)
- Allows for rudimentary forecasting

Data years + delensing	Noise o [Deg]	Delens Ø [Deg]	Total
2 yrs (17-18)	0.061	0.035	0.078
7 yrs (17-23)	0.004	0.035	0.055
2 yrs + delens	0.035	0.024	0.073
7 yrs + delens	0.007	0.024	0.048

Impact on *r*

We

Self-calibration mitigates systematics from unknown overall polarization angle, but not det-to-det and tile-to-tile variations.

TABLE VI: ρ estimates for various configurations, showing impact of residual B-modes power after mitigation by calibration and/or analysis (derotation).

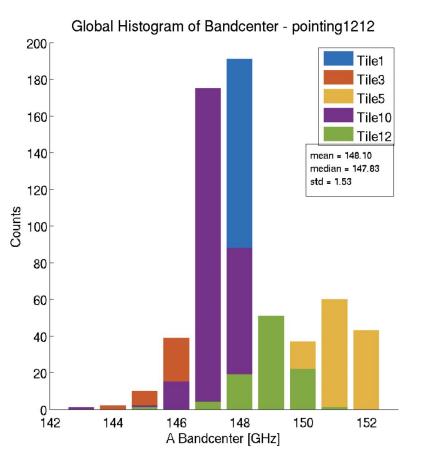
			<i>i</i>
	Case	$\rho\left(10^{-5}\right)$	
	Uncalibrated	510 ± 64	
(Self)	Calibrated, no variation	0 ± 2	
	Uncalibrated derotated — all detectors	4 ± 3	
	Uncalibrated derotated — tile clocking only	4 ± 1	
e're currently here	Calibrated with error	8 ± 3	
	Calibrated with error + derotated	0 ± 2	Best-case scenario
			4

Impact is still subdominant by ~2 orders of magnitude

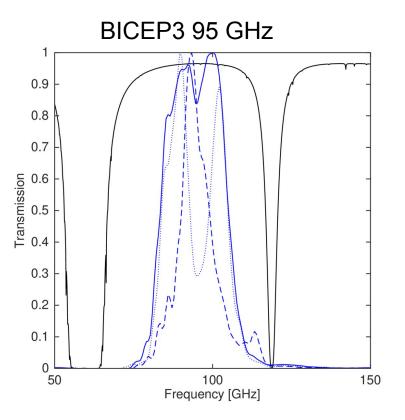
BA 220/270 GHz Receiver: Status and Performance

Custom-built Martin-Puplett interferometer mounted to receiver window

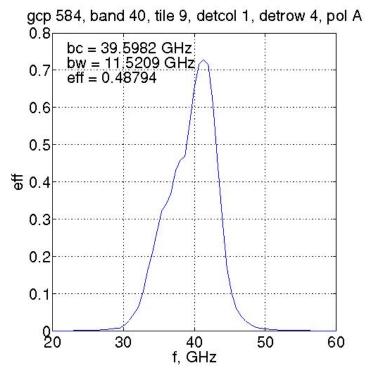
220 GHz detector module optical testing: FTS Interferogram of a typical detector Co-added spectral response for polarization A interferogram, gcp 1118, mce 0, tile 5, det col-10 row-2 pol-A, band 220 H10 H9 0.5 110 120 130 160 180 200 220 240 260 280 160 180 200 220 240 260 280 GH₇ GHz Band center: 228 GHz (H10), 233 GHz (H9), and 231 GHz (H1) Bandwidth: 28% (H10), 26% (H9), and 25% (H1)

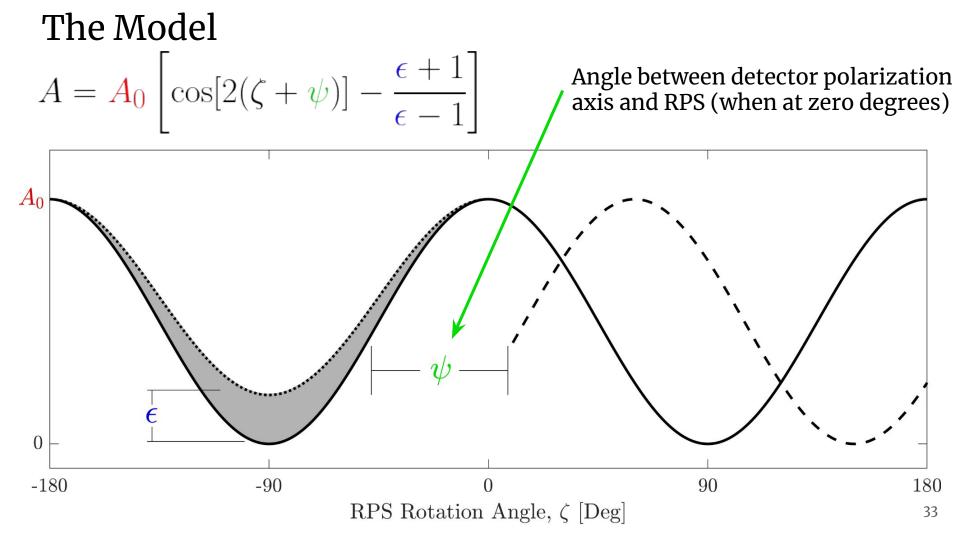

Enabling Next-Generation Constraints on Cosmic Inflation via High Sensitivity Dust Measurements with BICEP Array and Optimized Lensing Reconstruction with SPT-3G – Yuka Nakato

BA 150 GHz

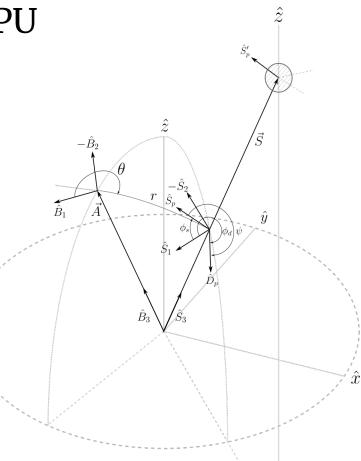

Highlights from tilemaps and statistics compiled by Min for 2023 data

- Overall statistics: bandcenter = 148GHz, bandwidth = 44GHz (30%)
 - Tile-to-tile differences, differential bandpass, sensitivity to FTS pointing not quantified
- Tilemaps look relatively uniform, except for L6 which has a clear radial pattern + dip in the bandpass


Courtesy of Min Gao, Clara Verges


Current BICEP3 / BICEP Array Bandpasses

BA 40 GHz



Backup Slides

Angle wrt RPS \rightarrow Angle wrt FPU

- Need a way of converting ψ into an angle that can be transferred to the CMB.
- Pick an arbitrary reference point of the focal plane and use a pointing model
- Very complex geometry problem
- Needed to consider many potential sources of systematics

