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Cosmic Birefringence
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Photogrammetric Determine camera

attitude reconstruction  coordinates and /R
angles: (00,0, \5 Lz
® \We use photogrammetry to 1)) 2
measure the time varwng position %‘~
of the source with high accuracy. RS
\ ~ ~ Yr
® The camera position and angle ] o \ e \\Z o
can be precisely reconstructed High precision \\ ~
from fiducial marks on the ground.  in-time metrology \ ~o
® The pol%rizfatiodnbangle of thed 4K video, 30 fps AN O ®  ~.
source, define a wire gri RS ior SO0 Siy 1) Nele Sk ok Vi
polarizer, is refereynced to Stlhe NN © ©
angle of the camera. WGS-84

® The source and camera are held
on a rigid frame, and their relative
angles are calibrated in the
laboratory.

® The landmark system is based on
a 3D reconstruction of the site,
including the exact location of the
telescopes.

Build a reference
coordinate system




Thermal loading and power constraints
Using CLASS as reference

Drone Emission for CLASS

50 Transmitted power constrains for CLASS
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® The diluted temperature of the drone sets a limit to the minimum distance, which is more stringent at higher frequency
bands. We will consider 500 meters to be our nominal distance.

® For direct beam measurements, we estimate that a forward transmitted power of -18 dBm will suffice all distances and
frequency bands.



Flight programs

Measuring telescope optics in nominal observing conditions

The drone is flown 500 meters away, at nominal
elevation as seen by the telescopes.

. FLY025
The drone moves up and down forming an arc, at

constant distance from the telescopes. © 90 GHz

80 150 GHz

Meanwhile, the telescopes scan in azimuth, similar to
their normal CMB observations. 60

The gimbal keeps the source pointing to a fixed POlI,
strategically located at the center of site, not in any
particular telescope.

Elevation [deg]

20 4

The drone batteries allow for 7-10 minutes of useful
flight time, which translates into 3-5 up-down scans,
producing 300-500 useful detector crossings.

The drone's launch point and trajectory is always kept 0 200 400 600
away from people and equipment at the site, performing Time [#l

the high altitude program when already far from the

telescope site for safety reasons.



HoverCal + PoloCalC e

flights
10-min long

< 500 m above
ground

DJI Matrice 600 Pro (S JiNPr - B REsglPS = & - High-altitude
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Gimbal T - —— MM-Wave
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Radio-Frequency Design of the Sources

Lightweight, tunable, modulated and electronically controlled

Three coherent sources, operating at 90, 150 and
220 GHz, base on a Valon PLL and VDI frequency
multipliers.

Tunable between 75-115, 110-170 and 220-300
GHz respectively.

Active attenuation.
Electronically chopped at 47 Hz.
Low directivity output feed.

A wire grid polarizer with 99.9% degree of
polarization.

System control and communications provided by a
Raspberry Pl 4.

Custom made auxiliary power and sensor boards
complete the control electronics.

Additional GPS (timing), inclinometer and weather
sensors are included.
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RF source characterization

We characterized the RF

properties of the source,
including frequency and
power stability, beam
pattern and polarization
degree.
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Average Stability (standard deviation) of the RF source power through the
usable frequency range (130 to ~157 GHz ) is estimated at 0.106 dB.
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New Anechoic Chamber at Milano-Bicocca
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Photogrammetry

Camera calibration X

- Z

. N\ principal axis
®  The photogrammetry camera optics are

. . image plane
calibrated using reference targets.

® This is done using nominal camera i = w(1+kir24+kor!4+ksrl +2p1y; +3p2x;) + poy?

settings, in 4K video mode, infinity Ji = yi(L+kur +kari +ksrd +2p2 i + 3p14i) + P12y
focus and same exposure configuration

than used during flight.
_ _ Params. | mean (mu) error (std)
®  The primary optical parameters (focal
. . . fx 2569.61 8.64
length, pixel size, and image center)
are critical for the photogrammetric fy 2568.58 8.33
reconstruction, as they scale and shift X 1881.57 8.61
the result.
cy 1087.14 3.53
® The secondary optical (radial and k1 0.0195 0.0057
tangential distortions), are also K2 -0.0420 0.0232
measured, but their overall effect in the
camera position and aim determination k3 0.0306 0.0271
are small compared to our needs. pl -0.00027  0.00046
p2 -0.00108 0.00097




Camera reconstruction uncertainties
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Camera - Wire Grid Alignment

Using laser diffraction pattern

Laser diffraction pattern

—— ——————— — —

i : LASER ALIGNMENT
Wires" METHOD PROVED
direction ACCURACY OF 0.01°

Image filtered and analysed through Python code

Frequency

Distribution of relative angles

-0.53 -0.52 -0.51 -0.50 -0.49
Relative angle (deg)

The camera and the polarizing
grid must be carefully aligned in
the laboratory previous to the
experiment on the field.

The angle is determined with a

dispersion of less than 0.01 deg.
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Photogrammetric reconstruction of the source position

Camera vs GPS Distance
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We compare the
photogrammetric
reconstruction camera position
to the (more accurate) GPS
position.

The mean offset in distance is
less than 24 cm.

The slow position-dependent
drift is due to residual
miss-calibration of the camera
optics, with an std. of 13 cm.

After removing the slow drift
(averaging every 30 frames),
the remaining residuals have
an std of 3 cm.

These residuals may still
contain real motions of the
source with respect to the
drone.



Source attitude and

“vibrations”

during the flight.

The source is actively pointed
towards the POI during flight.

Slow attitude corrections
compensate the drone motion

The drift residuals are indicative of
source fast “vibrations”, combined
with measurement errors.

The dispersion of the attitude
angles is less than 0.4 deg. for roll,
being an upper limit to the precision
of the roll angle measurement.
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Roll [deg]

Photogrammetry Roll Angle
Jackknife analysis

e Measurement errors are dominated by target
centroid determination

e \We compute the roll angle dispersion repeating
the solution after randomly removing 1 target at a
time.

mm jack median
93.126

93.125
93.119
93.116

93.115

#2:113 0 1699 3399 5099 6799 8499

Frame

10199

Frequency density
N w = w (o)} ~

[y

o

Median Roll
Std = 0.016 deg

0.15 0.20 0.25
Jackknife STD

Frequency Domain Representation (FFT)
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Site Campaigns

Aprll 2022
11 flights
o 90 and 150 GHz sources
o CLASS, Simons Array (PBa), ACT
o  Tested different flight strategies
Tested source power and thermal loading

. February 2023
o 10 flights
> 90 and 150 GHz sources
o CLASS
o  Tested the new control system and auxiliary
inclinometer
. Apr|I 2024
17 flights

o 90 and 150 GHz sources
o CLASS, SO, ALMA
o ALMA green light
Completed CLASS boresight angles

. December 2024: full calibration flights

18




The detector TOD show the
instant when a detector
sees the drone.

The source signal is
chopped at 47 Hz,
producing a spectral line in
the TOD.

Both CLASS and SO-SAT
have polarization
modulators, operating at 10
and 8 Hz respectively.

The signal is thus double
demodulated, appearing at
both sides of the main 47 Hz
carrier.

The double demodulated
signal is purely polarized.

PSD

T signal ~ Jupiter in 6m telescope
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Pointing reconstruction from telescope data

CLASS and SO-SAT TODs where
analyzed to determine the pointing
accuracy of the system.

We measured the time delay and
pointing error of every event in
which a detector beam crossed the
drone.

A Gaussian beam model was used
to reconstruct the crossing event
and find the pointing errors.

The azimuth errors are better
constrained by the telescope scan.

The pointing dispersion is close to
0.01 deg (0.6 arcmin)
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CLASS Maps (Work in progress)

T Q U
Photogrammetry
corrections are not
included yet in this result
. £ y
] VPM
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CLASS polarization measurement dispersion consistent
with motions of the source during the flight

It is still pending to correct these motions

VPM when determining the polarization angle

1.0 7 === VPM x Chopper

. ' photogrammetry :
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Simons Observatory SAT beam maps WM~ 199 arermi

SAT3 Ideal: 17.6 arcmin
8%5: (0.00, -0.00), amp: 0.97, fwhm: 0.28

- 1.0 Q beam profile for Flight 615 @ 150 GHz, with source
0+ FWHM ~ 19.2 arcmin
0.4
0.8
~104
0.2 =
0.6 ' S
2, = —20
S o £
0.0 2% w 8
0.4 2 £ -30
w o
-0.2 o
0.2 =40
-0.4
_50 4
0.0 0 10 20 30 40 50 60 70 80
-0.6

iwin: Angle [arcminutes]
06 -04 -0.2 0.0 0.2 0.4 0.6

deg

Azimuth [°]

First drone maps done with SO-SAT already allow us to characterize fundamental
properties of the beam and of the telescope performance.

The measured beam sizes are consistent with the expected values if the pointing
errors are considered.
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Fin
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Coordinate system reconstruction

7p 1. Camera System

The camera (source) coordinate (zw, 7w, 7w) = World System
system is determined in the word (. % E)) = Telescope System
%)

T

_ DA _ Line of Sight Syst
system provided by the GPS (#e, vz, %) = Camera System e o misR ysem
(Tp> Tp» = Line of Sight System 7, s Ng;

Given that the source is not LA /’
pointing directly to any telescope, w® ¢ y 5 g
a correction is needed to compute o " 7 /oy s B =R
the roll angle of the source along Ey = SpcEe ol FLE ”X't” — Xk
the line of sight. . / /

e ‘ 4 4 — (0,01 x4
We assume that the electric field e x2 : * 7 [[10,0,1] x %]
Co : : : P
is aligned W|t_h the wire grld_ plane - . 158 _ 2 . B
and perpendicular to the wires. - / ;) Cw w Up = % % %]

. 7 /
. . 7
The angle of the wires in the 3 7 -~ -
camera coordinate system is P y 0. — arctan S,. cos (6;) + S, sin (6,)
determined in the laboratory prior 2 = g 4 2 e Skt cos (6.) + Si? sin (6,
i s w t c c
to the flight. » / %
s g ’ — /
> 4 4 — Xt / o
v S - J S
Point of Interest . /
Tw

T
World System k Telescope System
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GPS-photogrammetry differences
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Data reduction pipeline

(ctime, az, el)

(ctime, lon, lat)

(camera position
from photogrammetry)

<
«

(GPS data rate)

(GPS ENU coords)

v

S/ s[- _ (roll, pitch, yaw) Solve

A

SSUES (video data rate) Attitude
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0.5 q Difference = 0.473

GPS - Photogrammetry 8

Incidence on attitude - . i
determination :
Compare the attitude obtained using ’
photogrammetry alone vs forcing the position to :
be determined by the GPS :

p Difference = 0.128

e Photogrammetry suffers from a strong
correlation between angles and position.

Pitch [deg]

e This is solved by forcing the solver to ’
use the GPS position in the

photogrammetry fit. | ]

e The effect in the attitude is small, less
than 0.5 degrees in yaw, and less than
0.07 degrees in roll.

Roll [deg]

[ 50 100 150 200 250 300 350 400 89.0 89.5 90.0 90.5 91.0 91.5 92.0 92.5
Seconds
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Motivation

. . . . Sky map of CMB polarization measured by the Planck satellite (2018).
Absolute polarization angle calibration

® Standard models predict null TB and EB
power spectra.

® These correlations may provide hints for
non-standard physics, or may be due to
instrumental systematics.

® To detect new physics we need to calibrate
the absolute polarization angle of CMB
telescopes to better than 0.1 degrees.

® The lack of well suited natural calibrators
justifies the development of artificial
alternatives.

® Our approaCh is to develop a UAV-based Polarization maps illustrating the rotation of

calibration source. photon polarization. Credit: Liang Dai. ©2014
American Physical Society



Topics

- Scientific need for better polarization angle determination of CMB telescopes

- HoverCal + PoloCalC: general project description
- Collaboration with SO and CLASS (ACT, Polarbear)
- Independent measurement. Artificial source.
- Metrology system:
RTK GPS accuracy (pointing analysis) (Rolando)

- Photogrammetry accuracy (errors in position reconstruction from photo vs GPS, roll, pitch, yaw from lab test,

statistical analysis of photogrammetry angle reconstruction) (Federico Astori)
- Roll angle error estimation (Gabriele)
- Camera calibration
Wiregrid angle determination (laboratory tests) (Matias, Gabriele)

- Slte campaigns:
- Flight programs and methodology
- ALMA green light
- Future plans

- Preliminary results:
- CLASS pointing accuracy (Rolando, Yunyang)
- SO pointing accuracy — wobble effect discovery (Rolando, Carlos, Nadia)
- Photogrammetry angle determination (Federico Astori, Yunyang, Rolando, Gabriele)
- First polarization angle measurements for CLASS (Yunyang, Rolando)
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Preliminary Error Budget

Background noise

Change in

atmospheric emission,

drone/balloon thermal
emission and
ground pickup

Oback~ 0.001°

Calibration source noise & accuracy

Emitting power
stability
Modulated,
angle has very
weak

dependancy

Opow <<
0.001°/VHz

Attitude stability

-Wind speed < 5 m/s
-Gimbal stabilization
-Wide emitting beam

Ouwing < 0.001°/VHz

Attitude
Determination
instant
Accuracy

Oapacs <
0.01°
(expected
~0.001°)

Alignment
between attitude
sensors and
polarized source

Galign =
baseline: 0.1°
target: 0.01°
(or better)

Telescope noise & accuracy (from SO requirements)
Relative polarization angle accuracy: ~ 0.001°

Note that Absolute polarization angle accuracy from direct calibration is only ~ 1°
(Lowered by indirect model assumptions on Tau-A and TB and EB correlations)

Telescope Beam, optical HWP position Radiation coupler,
base pointing elements, readout electronics:
accuracy filters accuracy sy~ 0.001°
Obase ~ 0.001° Opeam < 0.001° Opwp <<

0.001°VHz

Oa ~/(Oback)? + (Tpow)? + (Gwing)? + (Tapacs)? + (Gaiign)? + (Tbase)? + (Tbeam)? + (Tback)? + (Grwe)? ~ [0.1° 1 0.01 °]
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