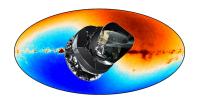


Dipole Based Calibration for Planck

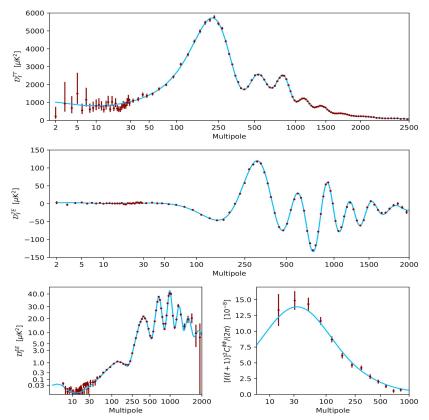
Mathew Galloway University of Oslo

CMB Cal Workshop, November 2024

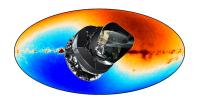
Cosmoglobe



The Planck Mission



Parameter	Plik best fit
$\overline{\Omega_{ m b}h^2}$	0.022383
$\Omega_{\rm c}h^2$	0.12011
$100\theta_{MC}$	1.040909
τ	0.0543
$\ln(10^{10}A_{\rm s})$	3.0448
$n_{\rm s}$	0.96605
$\overline{\Omega_{\mathrm{m}}h^2}$	0.14314
H_0 [km s ⁻¹ Mpc ⁻¹]	67.32
$\Omega_{\rm m}$	0.3158
Age [Gyr]	13.7971
σ_8	0.8120
$S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$	0.8331
Zre	7.68
$100\theta_*$	1.041085
$r_{\rm drag}$ [Mpc]	147.049



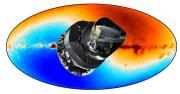
The Planck Mission

"We just calibrate against Planck..." -Lots of people, yesterday

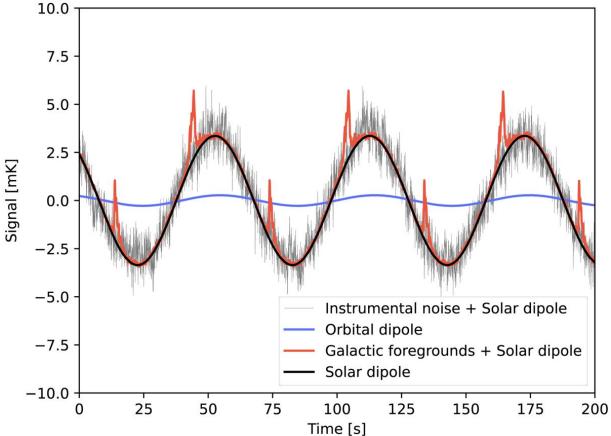
Space: The final frontier

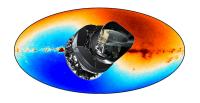
Hard to produce a calibration source in the far field.

- Formation flying?
- Planets
- Bright point sources
- Thermal and radiative environment very different from ground tests
- Sensitivity regime is really hard to probe from the ground
 - Really expensive TVAC chambers
 - Only one chance to get it right!

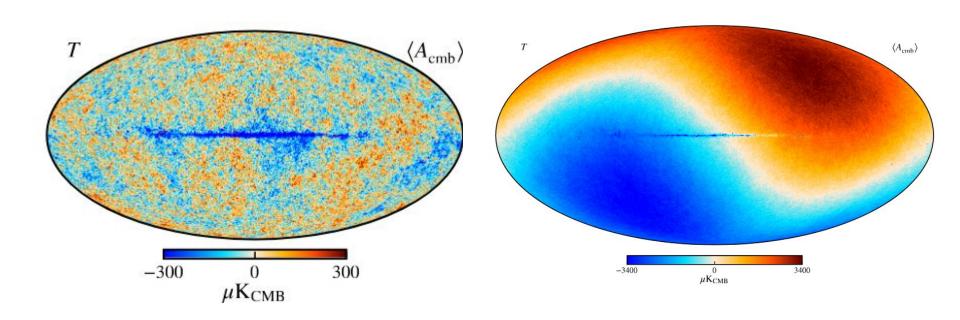


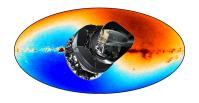
What are we working with?





Solar Dipole

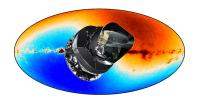




Solar Dipole

- Brightest calibration source we have (other than the monopole which requires absolute DC level to be retained)
- Doppler shift in the CMB
- Amplitude + direction are dependent on the motion of the sun relative to the Universe (not well known)

Pipeline	Amplitude (μK)	Longitude (Deg)	Latitude (Deg)
DR2 [2]	$\begin{array}{c} 3364.29 \pm 0.02^{\mathrm{stat}} \\ \pm 0.8^{\mathrm{syst}} \pm 0.74^{\mathrm{FIRAS}} \end{array}$	$263.914 \pm 0.001^{\text{stat}} \pm 0.013^{\text{syst}}$	$48.2646 \pm 0.0003^{\rm stat} \pm 0.0019^{\rm syst}$
DR3 [6]	$3362.08 \pm 0.09^{\text{stat}} \pm 0.45^{\text{syst}} \pm 0.45^{\text{cal}}$	$264.021 \pm 0.003^{\text{stat}} \pm 0.008^{\text{syst}}$	$48.253 \pm 0.001^{\rm stat} \pm 0.004^{\rm syst}$
DR4 [7]	3366.6 ± 2.6	263.986 ± 0.035	48.247 ± 0.023
Sroll2 [12]	$3361.90 \pm 0.04^{\text{stat}} \pm 0.36^{\text{syst}}$	$263.959 \pm 0.002^{\text{stat}} \pm 0.017^{\text{syst}}$	$48.260 \pm 0.001^{\rm stat} \pm 0.007^{\rm syst}$



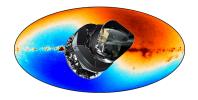
Orbital Dipole

- Not a sky-stationary signal (maps don't look like anything useful)
- Doppler shift because of the Earth's motion relative to the sun
- Amplitude and direction is very well known and easily predictable (relativistic doppler effect)

$$s^{\text{dip}}(\boldsymbol{x},t) = T_{\text{CMB}}\left(\frac{1}{\gamma(t)(1-\boldsymbol{\beta}(t)\cdot\boldsymbol{x})}-1\right)$$

 $\boldsymbol{\beta} = \boldsymbol{v}_{\text{tot}}/c, \text{ and } \boldsymbol{\gamma} = (1-|\boldsymbol{\beta}|^2)^{-1/2}$

• Much weaker than the solar dipole 😢



Gain Estimation Procedure in BeyondPlanck

We decompose the gain into an absolute and a relative term,

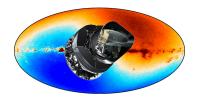
$$g_{q,i} = g_0 + \gamma_{q,i}$$
$$\sum_{q,i} \gamma_{q,i} = 0$$

with the constraint that

This turns out to be easier if we also decompose the second term into two parts:

$$g_{q,i} = g_0 + \Delta g_i + \delta g_{q,i}$$

(i indexes detectors and q indexes time)

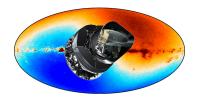


Gain estimation - Overall gain

- Objective:
$$P(g_0 \mid \Delta g_i, \delta g_{q,i}, lpha, \sigma_0, ..., d)$$

- Using this approach, we construct our absolute residual: $r_{t,i} \equiv d_{t,i} - (g_0 + \Delta g_q + \delta g_{q,i})s_{t,i}^{\text{tot}} + g_0 s_{t,i}^{\text{orb}} = g_0 s_{t,i}^{\text{orb}} + n_{t,i}$
- To sample from this (standard univariate gaussian):

$$\hat{g}_{0} = \frac{\sum_{i} (\vec{s}_{i}^{\text{orb}})^{T} N_{i}^{-1} \vec{r}_{i}}{\sum_{i} (\vec{s}_{i}^{\text{orb}})^{T} N_{i}^{-1} \vec{s}_{i}^{\text{orb}}} + \sqrt{\frac{1}{\sum_{i} (\vec{s}_{i}^{\text{orb}})^{T} N_{i}^{-1} \vec{s}_{i}^{\text{orb}}}} \cdot \eta$$



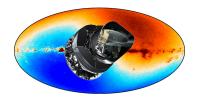
Gain Estimation - Per detector gain

- Same approach, form total signal residual $r_{t,i} \equiv d_{t,i} (g_0 + \delta g_{q,i}) s_{t,i}^{\text{tot}} = \Delta g_i s_{t,i}^{\text{tot}} + n_{t,i}$
- Subject to additional constraint:

$$\sum_{i} \Delta g_i = 0$$

- Use lagrange multipliers. Some math before we arrive at N+1 coupled equations that can be solved for $\,\Delta g_i$:

$$\begin{array}{cccc} \left(\boldsymbol{s}^{\text{tot}} \right)^{T} \mathbf{N}_{1}^{-1} \, \boldsymbol{s}^{\text{tot}} & 0 & \frac{1}{2} \\ 0 & \left(\boldsymbol{s}^{\text{tot}} \right)^{T} \mathbf{N}_{2}^{-1} \, \boldsymbol{s}^{\text{tot}} & \frac{1}{2} \\ 1 & 1 & 0 \end{array} \right] \begin{bmatrix} \Delta \, \hat{\boldsymbol{g}}_{1} \\ \Delta \, \hat{\boldsymbol{g}}_{2} \\ \lambda \end{bmatrix} = \begin{bmatrix} \left(\boldsymbol{r}_{1} \right)^{\text{tot}} \mathbf{N}_{1}^{-1} \, \boldsymbol{s}_{1}^{\text{tot}} + \boldsymbol{\eta}_{1} \sqrt{\left(\boldsymbol{s}_{1}^{\text{tot}} \right)^{T} \mathbf{N}_{1}^{-1} \boldsymbol{s}_{1}^{\text{tot}}} \\ \left(\boldsymbol{r}_{2} \right)^{\text{tot}} \mathbf{N}_{2}^{-1} \, \boldsymbol{s}_{2}^{\text{tot}} + \boldsymbol{\eta}_{2} \sqrt{\left(\boldsymbol{s}_{2}^{\text{tot}} \right)^{T} \mathbf{N}_{2}^{-1} \boldsymbol{s}_{2}^{\text{tot}}} \\ 0 \end{bmatrix} .$$



Gain Estimation - Time variable gain

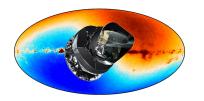
• Again form a residual:

$$r_{t,i} \equiv d_{t,i} - (g_0 + \Delta g_i) s_{t,i}^{\text{tot}} = \delta g_{q,i} s_{t,i}^{\text{tot}} + n_{t,i}$$

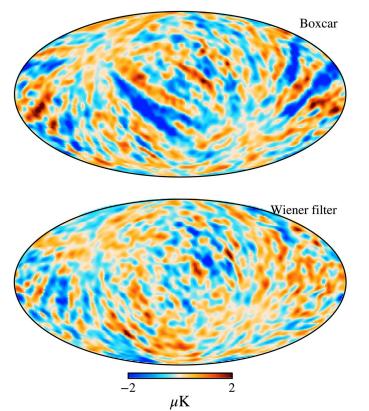
• Then the solution is again

$$\mathsf{T}_{i}^{T}N_{i}^{-1}\mathsf{T}_{i}\hat{\delta g_{i}} = \mathsf{T}_{i}^{T}N_{i}^{-1}\vec{r_{i}} + \sqrt{\mathsf{T}_{i}^{T}N_{i}^{-1}\mathsf{T}_{i}} \cdot \vec{\eta}$$

- Where the matrix T is N_samples x N_chunks, ie. the number of time variable gain samples you are considering
- But, this solves for each chunk independently, leading to non-physical sharp features in the gain



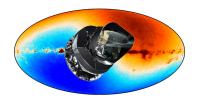
Gain Smoothing



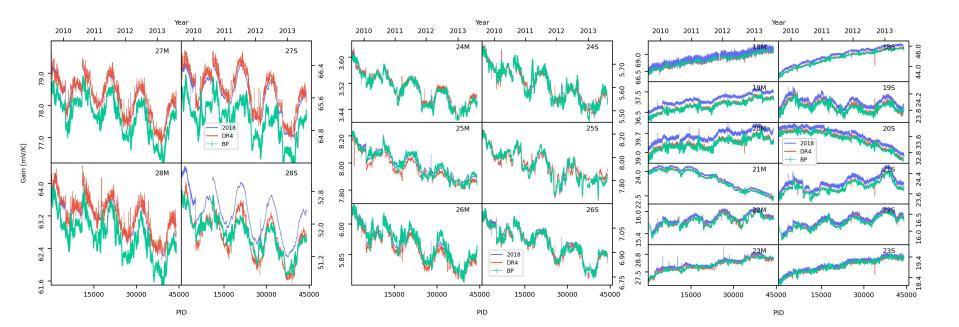
- We want to smoothe the gains between chunks because we believe the underlying processes (temperature, environment, etc.) are smoothly varying
- We can add an underlying model of the correlations between gain samples: $(f)^{\alpha}$

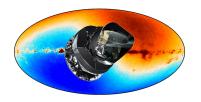
$$\mathsf{G}(f) = \sigma_0 \left(\frac{f}{f_0}\right)^c$$

• This lets us draw smoothed samples from $(\mathsf{G}^{-1} + \mathsf{T}_i^T N_i^{-1} \mathsf{T}_i) \hat{\delta g_i} = \mathsf{T}_i^T N_i^{-1} \vec{r_i} + \mathsf{T}_i^T N^{-1/2} \vec{\eta_1} + \mathsf{G}^{-1/2} \vec{\eta_2}$

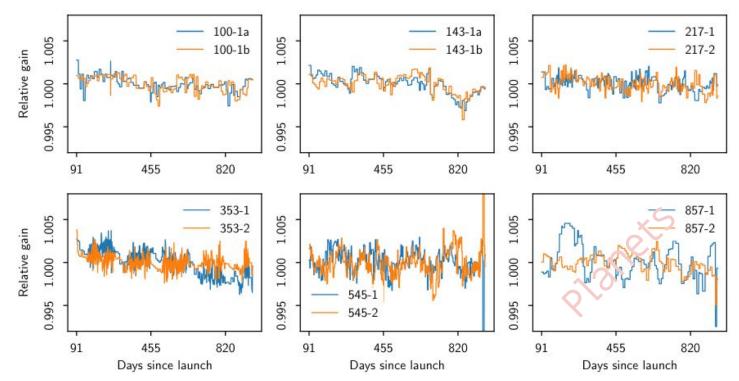


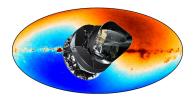
LFI Gains



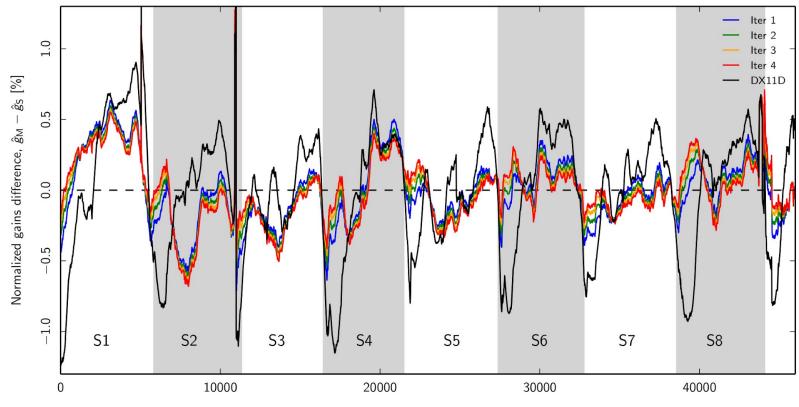


HFI Gains - DR4

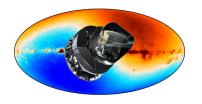




Dependence on the sky model



Pointing ID



Sidelobes

- Detector sensitivity outside main beam
- At the 1-3% level for Planck
- Can mess up your calibration!

- We must replace the simple formula with $\widetilde{D}(\widehat{n}_0) = \int d\Omega B(\widehat{n}, \widehat{n}_0) D(\widehat{n})$.
- Because this is a very simple signal, we can break it into 9 distinct precomputable terms: $\widetilde{D}_{}=T_0[S_r,\beta_r+S_r,\beta_r+S_r,\beta_r]$

$$= T_0 \left[S_x \beta_x + S_y \beta_y + S_z \beta_z \right]$$
$$+ q \left(S_{xx} \beta_x^2 + S_{yy} \beta_y^2 + S_{zz} \beta_z^2 \right)$$
$$+ 2S_{xy} \beta_x \beta_y + 2S_{xz} \beta_x \beta_z + 2S_{yz} \beta_y \beta_z \right].$$

0.00001

0.00010

275 Sidelobes

Amplitude

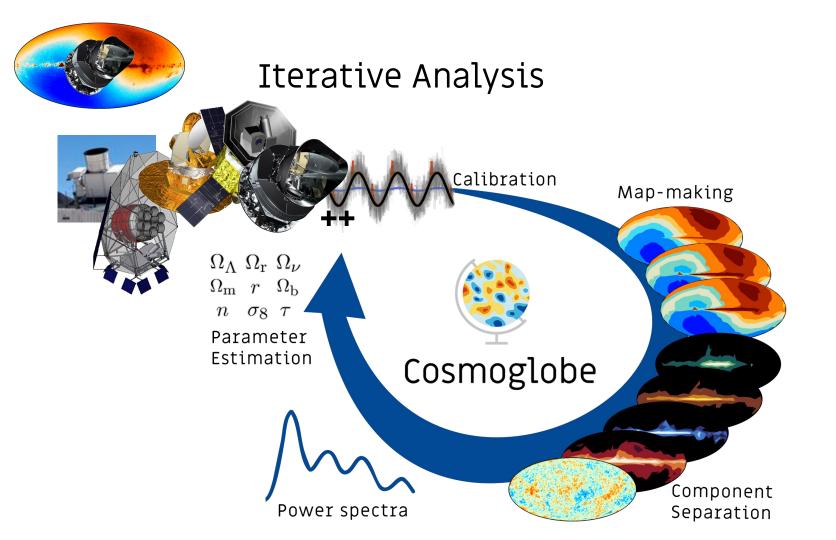
Main Beam

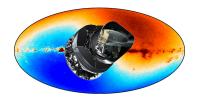
Primary Spillover

0.01000

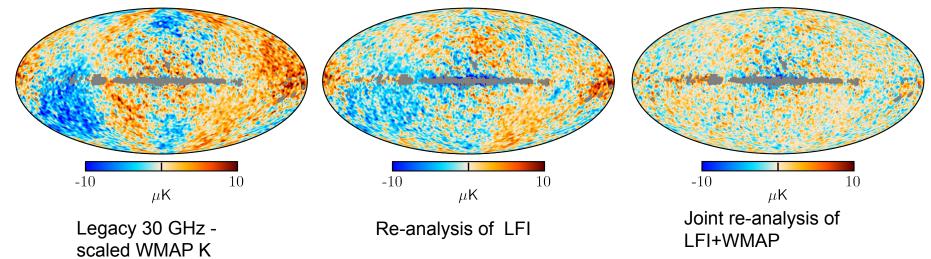
0.05000

econdary Spillove

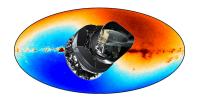




Advantages of joint analysis

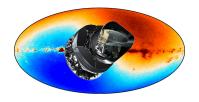


The end-to-end approach is really good at mitigating systematics that traditional pipelines struggle with!



Summary + Conclusions

- On-sky calibration for Planck is done using the orbital and solar dipoles at CMB frequencies, and planets at higher frequencies
- Gains are split into overall calibration and a time varying component
- It is important to smoothe these gains properly to avoid introducing errors
- Dipole-based calibration is sensitive to all the details of your sky and instrument
- Iterative analysis + joint analysis can be powerful ways to constrain all these parameters and get a robust gain solution



More reading

BEYONDPLANCK VII. Bayesian estimation of gain and absolute calibration for cosmic microwave background experiments - A&A 675, A7 (2023)

Planck intermediate results. LVII. Joint Planck LFI and HFI data processing - A&A 643, A42 (2020)

Planck 2018 results. III. High Frequency Instrument data processing and frequency maps - A&A, 2018/32909

Planck 2015 results - VIII. High Frequency Instrument data processing: Calibration and maps - A&A, 594 (2016) A8

Questions?