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Motivation
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Why should we care about frequency calibration?

Level 1: Avoid atmospheric absorption
lines
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Level 2: Enable accurate optical component separation
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Our instrument: the SO LAT ® CHICAGO

Targets small angular scales
7.8 degree FoV at 90 GHz
Effective f-number: 2.6
Arcminute angular resolution
o 1.4 arcmin beam FWHM at 150 GHz

Figures from
Gudmundsson et al. [2] 3
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Our instrument: the SO LAT CHICAGO

Single MF pixel e Bandpasses are defined by on-chip frequency filters.

e Alow-pass filter stack below the optics tube window
removes excess out-of-band power to decrease loading
on the detectors.

Simulated SO bandpasses b
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Tools for bandpass calibration % CHICAGO

Chopped thermal source = FTS = Coupling optics

ssssss

See T. Alford, R. Datta et al. (in prep) for a detailed Toogiiositke
analysis of FTS systematics

Frequency-Selectable Laser
Source (FLS)

See Shreya Sutariya’s talk on
Thursday at 12 PM!
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@ CHICAGO

How an FTS works

Detector response to individual frequencies as the
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Idealized Passband :)

e Based on the PIXIE design [5]

e Linear movement of central mirror—
change in path difference between FET
orthogonally polarized beams which ——
are recombined at the output

e Fourier transform the detector

. Central mirror position Frequency
response as the optical path (i.e. optical path
difference changes—passband difference) 5
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August 2024 in-situ characterization ® CHICAGO

3 FTS: JJOptICS”‘
Chopperl |
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August 2024 in-situ characterization ® CHICAGO

Place NDF |, | Park FTS & coupling |, | Stream data with FTSon || Make sure enough |
over array optics over array white-light fringe etectors see a signa
(~100 per observation)

1

b A:j/erage all Fourier-transform Stream data while Set FTS parameters (i.e.
andpasses per the TODs to mirror step size & throw)
array with weights |4

proportional to “ changing the F TS # according to the frequency

central mirror ranae of the arra
each detector’s position 9 y
SNR?

produce
bandpasses for
each detector




~1700 detectors (14 arrays) measured!
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“Level 17 passband calibration

LAT MF
104 ) v
A ﬂ ) AR
a" ‘\ ?‘ ,‘h A\
LA oA
0.8 Al s il el
/ 1 I (¥Rt
d 1 i !
0.6 I 1 I w
! 1 r [ -
1 1 I !
1 1 K Y \
0.4 1 1 [ A |
! 1 il |
" 1 '.. ﬁ‘
1 1 L IH
0.2 1 1 \ 1 D
1 1 i/ L
) 4 . A
00 o M‘l = \x...L. P \L
60 80 100 120 140 160 180 200

Frequency [GHz]

Red: normalized
emission at 1mm,
3mm PWV

Dotted: simulated
passband

8 MF arrays measured

LAT UHF
Twia 1.0 1 ;:_'/?q" _,',r\\

mv14 o WA 'I_’\" '

mv20 0.8 1 i A7 A

mv24 d N/ \

mv28 0.6 1 i "l' A':}'
mv32 i E:‘-. y uv38
mv34 0.4 J’, "1 “ uv3o
mv49 ;‘ {g;_“ : i uv46
=== sim 0.2 :: - 'I"v “ a7y
et N "o Y uv42
0.0 - — T T uv3l

150 200 250 300 350 ——= sim
Frequency [GHz]
6 UHF arrays measured
°

Bands mostly match simulations.
The edge of the MF-1 (90 GHz) band appears shifted, but both

bands remain within spec and negligibly affect the LAT’s mapping
speed.

Finer “level 2” passband analysis will require repeat calibration
without NDFs.




~1700 detectors (14 arrays) measured! ® CHICAGO

“Level 17 passband calibration
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Future improvements % CHICAGO

“Level 2" passband calibration

Coupling optics lens transmission

10 e Current in-situ

e HDPE lenses in coupling optics 08 characterization requires
introduce standing-wave interference \ manually moving the FTS

effects — spectral shifts depending on between arrays &
detector position on focal plane estimating the focus —
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. wo «» e Frequency shifts due to
: o o o9 path-length variations in the See T. Alford, R. Datta et al. (in
- e . beam through the FTS prep) for more detail
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Future improvements ® CHICAGO

“Level 2" passband calibration

Problem Solution
Position-dependent spectral shifts due | Fully reflective coupling optics —
to coupling lenses neutral, no spectral shifts

Focus- and position-dependent
spectral shifts due to FTS Robotic xyz-stage to move the FTS
across the focal plane & normal to the
window

Limited measurable detectors due to
manual procedure

12
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LAT coupling optics
“Level 2" passband calibration
Strehl Ratio Field Map
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Thank you # CHICAGO
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