

In-situ Optical Characterization of the Simons Observatory Large-Aperture Telescope Receiver

Claire Lessler on behalf of the Simons Observatory Collaboration

Photo credit: Hironobu Nakata

Motivation

Why should we care about frequency calibration?

Level 1: Avoid atmospheric absorption lines

Level 2: Enable accurate optical component separation

Planck 2018 results. I [1]

Our instrument: the SO LAT

Stop Hattes Lens

Lens

AK tiles

Windowill

40 cm

- Targets small angular scales
- 7.8 degree FoV at 90 GHz
- Effective f-number: 2.6
- Arcminute angular resolution
 - 1.4 arcmin beam FWHM at 150 GHz

Our instrument: the SO LAT

- Bandpasses are defined by on-chip frequency filters.
- A low-pass filter stack below the optics tube window removes excess out-of-band power to decrease loading

Tools for bandpass calibration

CHICAGO

See T. Alford, R. Datta et al. (in prep) for a detailed analysis of FTS systematics

In action!

To cryostat

Frequency-Selectable Laser Source (FLS)

See Shreya Sutariya's talk on Thursday at 12 PM!

How an FTS works

.....

Central mirror position

(i.e. optical path

difference)

response as the optical path difference changes→passband

August 2024 in-situ characterization

August 2024 in-situ characterization

CHICAGO

~1700 detectors (14 arrays) measured!

THE UNIVERSITY OF

~1700 detectors (14 arrays) measured!

"Level 1" passband calibration

CHICAGO

Future improvements

"Level 2" passband calibration

-10 - 10

detector x offset (mm)

Future improvements

"Level 2" passband calibration

LAT coupling optics

Thank you

UK Research and Innovation

References

- Planck collaboration, *Planck 2018 results. I. Overview and the cosmological legacy of Planck*, A&A 641 (2020) A1 [arXiv:1807.06205]
- 2. Gudmundsson et al., "The Simons Observatory: modeling optical systematics in the Large Aperture Telescope," Appl. Opt. 60, 823-837 (2021)
- 3. Duff, S.M., Austermann, J., Beall, J.A. et al., "The Simons Observatory: Production-Level Fabrication of the Mid- and Ultra-High-Frequency Wafers," *J Low Temp Phys* **216**, 135–143 (2024)
- 4. Maximilian H. Abitbol et al., "The Simons Observatory: gain, bandpass and polarization-angle calibration requirements for B-mode searches," JCAP05 (2021) 032
- 5. A. Kogut et al., "The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations," JCAP07 (2011) 025