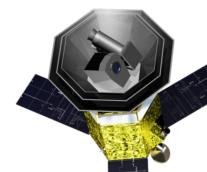


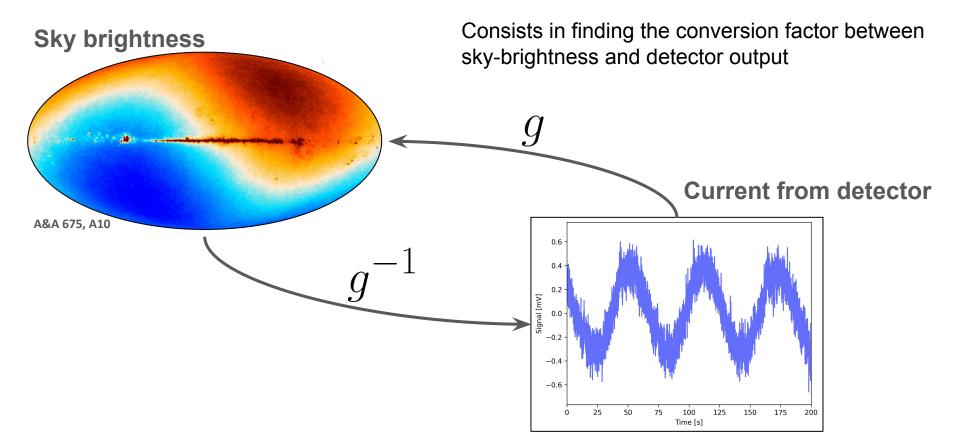
Setting Instrumental Requirements for the gain calibration of LiteBIRD

Alessandro Novelli

CMB-CAL @ Univ. Bicocca, 04/11/2024

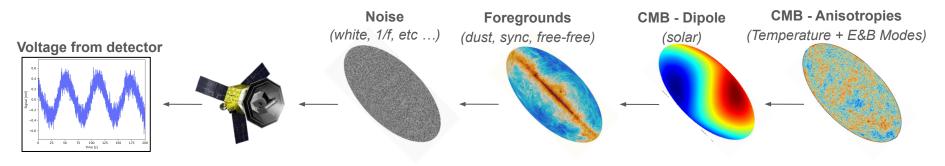


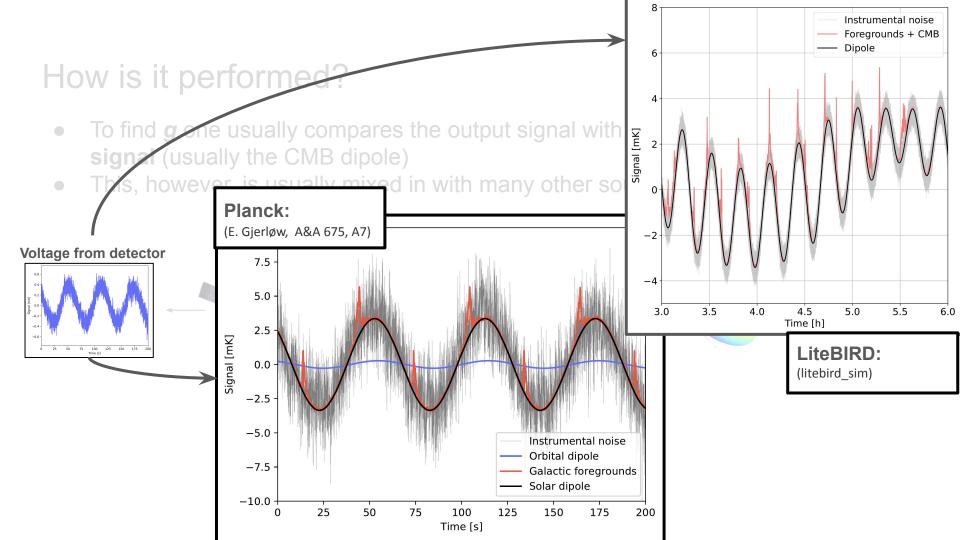
What is gain calibration?

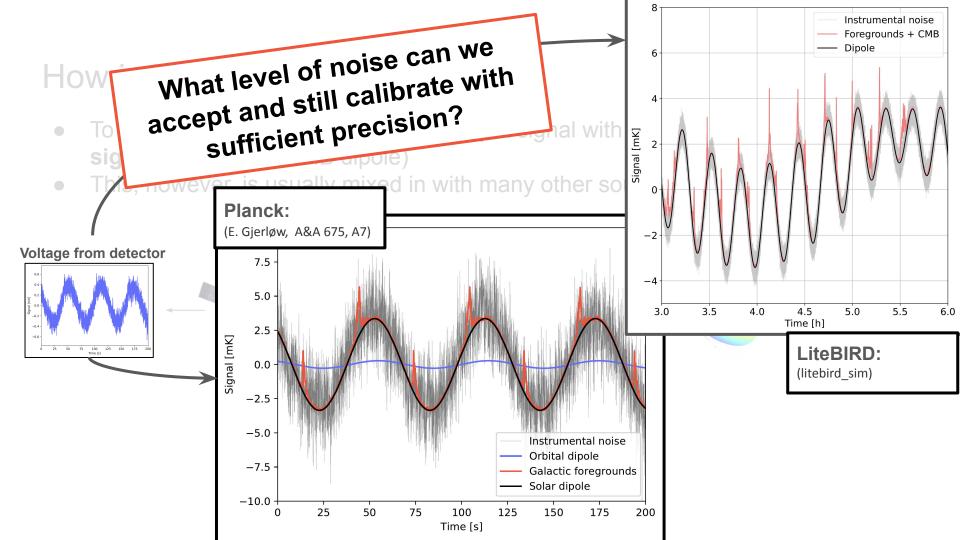


How is it performed?

- To find *g* one usually compares the output signal with an expected **reference signal** (usually the CMB dipole)
- This, however, is usually mixed in with many other sources







What level of noise can we accept and still calibrate with sufficient precision?

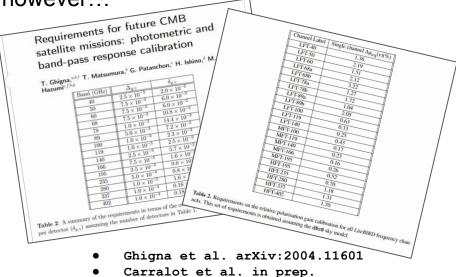
- → Step 1: What precision is needed?
- Step 2: What is our requirement on the instrument?

What level of noise can we accept and still calibrate with sufficient precision?

→ Step 1: What precision is needed?

Step 2: What is our requirement on the instrument?

Step 1: What precision is needed in the gain calibration? There are papers discussing this, however...



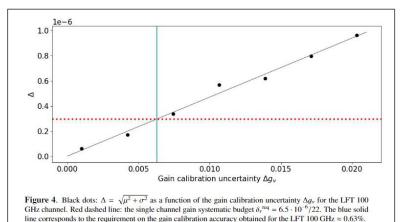
Quick Overview:

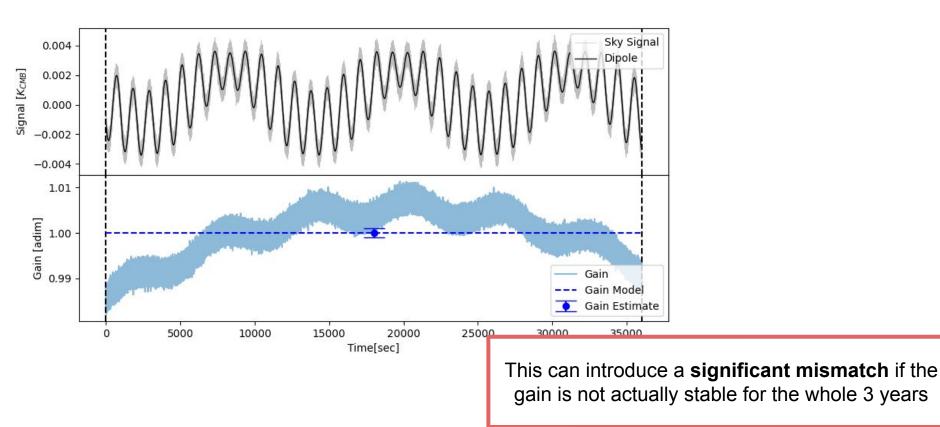
(Carralot talk on friday for more)

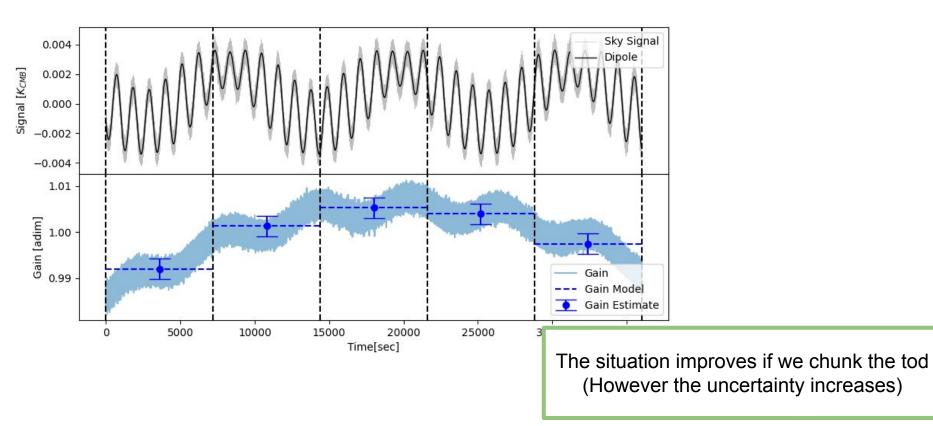
• Apply a random gain miscalibration Δg to a full sky map

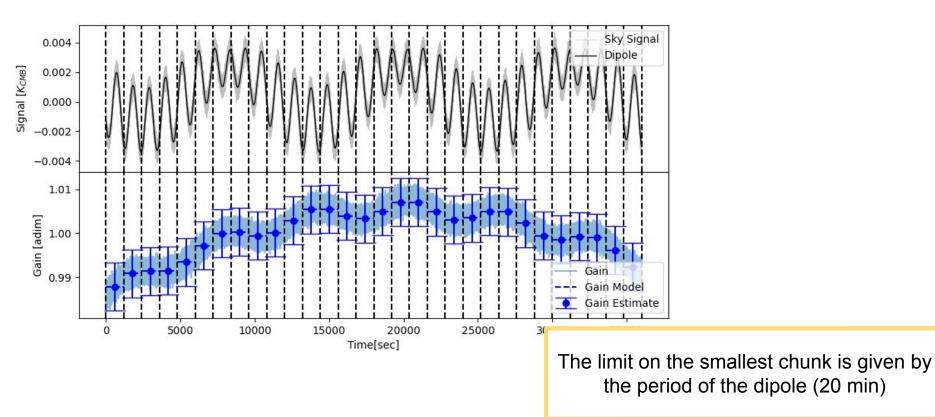
$$MAP_{INPUT} = (1 + \Delta g) \times$$

• Separate the CMB from the rest of the sky (comp-sep) and see how the miscalibration biases the results (Credits: Carralot et al, Ghigna et al.)

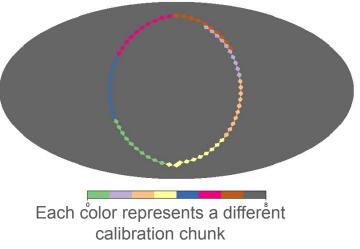








- I want to be able to simulate the effect of multiple calibrations on the sky to introduce them in the analysis
 - I need to know how the gain uncertainty scales with the calibration time
 (as a function of <---->)



- I want to be able to simulate the effect of multiple calibrations on the sky to introduce them in the analysis
 - I need to know how the gain uncertainty

scales with the calibration time

(as a function of ----->)

I can use a **tod-based minimum variance** approach

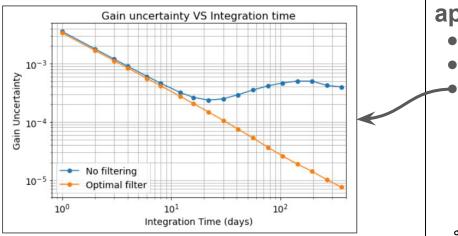
- matches the TOD to a dipole + fg template
- NO strong assumptions on calib strategy
- easy to simulate

$$\begin{split} & \overset{\text{pata model}}{d_i(t)} = \overset{\text{sky emission}}{g_i} \underset{(all sources)}{\text{noise}} \underset{\text{noise}}{\overset{\text{noise}}{d_i(t)}} \\ & g_i \begin{pmatrix} m(t) + n^{tot}(t) \end{pmatrix} \\ & \tilde{g} = \frac{\int d(t) \, m_0(t) \, dt}{\int m_0(t)^2 \, dt} \approx g\left(1 + \frac{\int n(t) \, m_0(t) \, dt}{\int m_0(t)^2 \, dt}\right) \end{split}$$

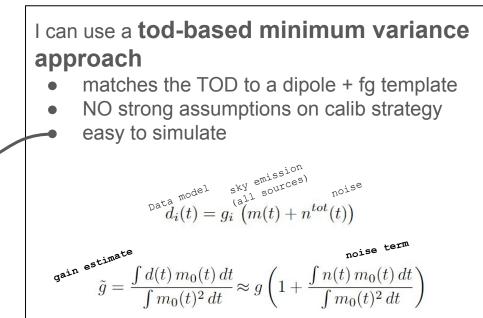
- I want to be able to simulate the effect of multiple calibrations on the sky to introduce them in the analysis
 - I need to know how the gain uncertainty

scales with the calibration time

(as a function of ----->)

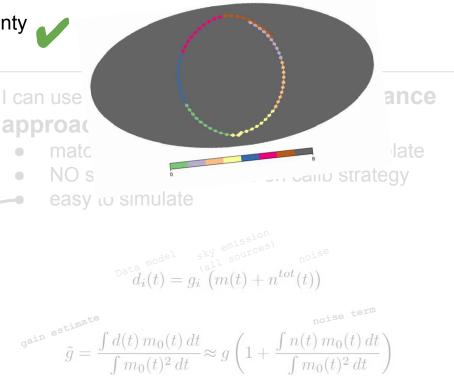


We can extract a relationship between gain uncertainty and calibration time (orange line)



- Step 1: What precision is needed in the gain calibration?
 - I want to be able to simulate the effect of multiple calibrations on the sky to introduce them in the analysis
 - I need to know how the gain uncertainty scales with the calibration time
 (as a function of <---->)

We can extract a relationship between gain uncertainty and calibration time (orange line)



Here are the results!

Longer integration times
 produce larger features

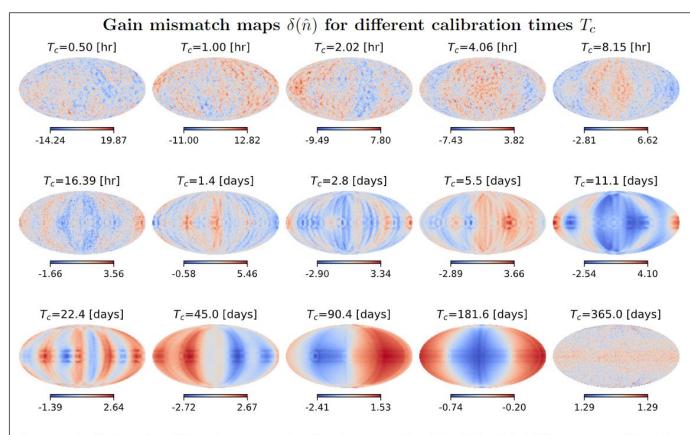
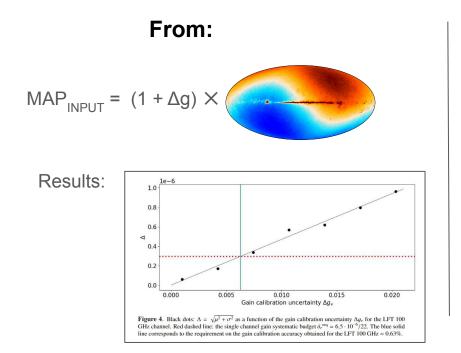
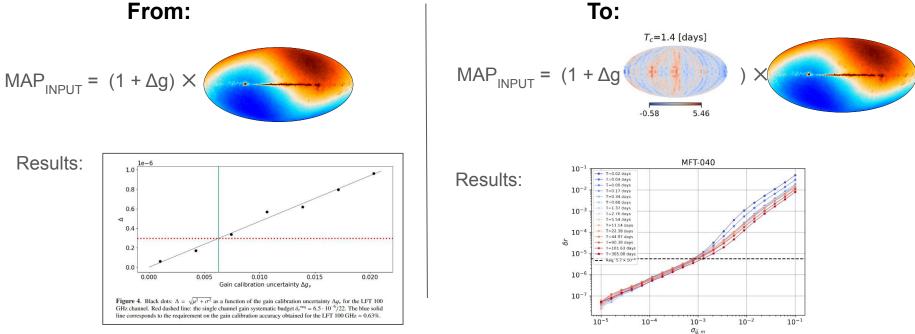


Figure 4: Gain miscalibration maps obtained computing Eq. 4.1 with different re-calibration times and a reference value for $\sigma_{\tilde{q},m} = 1$.

Now that I have these maps I can expand the results found in the papers



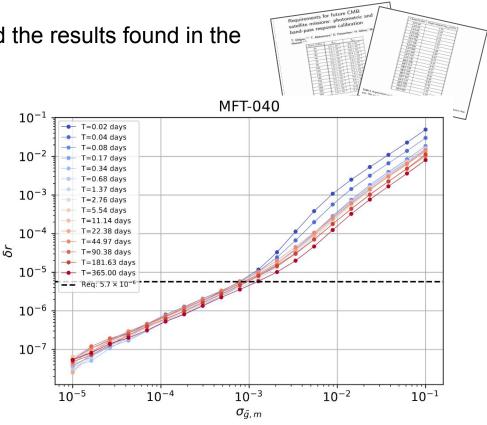
Now that I have these maps I can expand the results found in the papers



Now that I have these maps I can expand the results found in the papers

RESULTS:

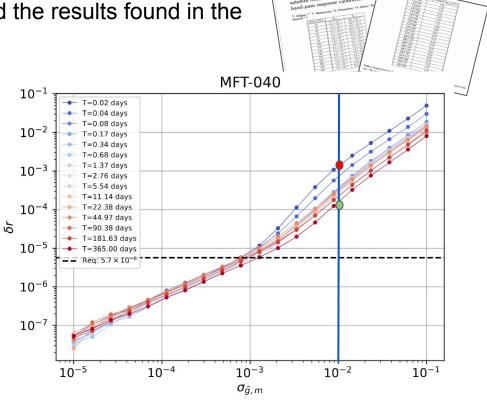
 At LiteBIRD's systematics threshold the relationship between gain uncertainty and measurement bias is independent of T_c



Now that I have these maps I can expand the results found in the papers

RESULTS:

- At LiteBIRD's systematics threshold the relationship between gain uncertainty and measurement bias is independent of T_c
- If the threshold would have been higher it would been convenient to calibrate on longer timescales (lower bias on r)



nts for future CMB

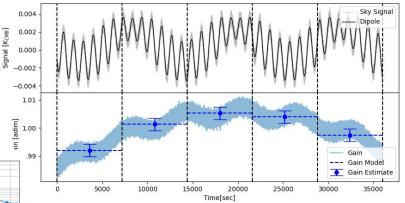
Now that I have these maps I can expand the results found in the papers

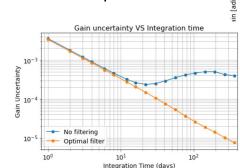
RESULTS:

Since there is no significant effect depending on $\rm T_{c}$ we prefer to calibrate on shorter timescales and track gain fluctuations

This gives us:

- The optimal calibration time: 20~30 min
- The maximum calibration error that is acceptable in each calibration chunk





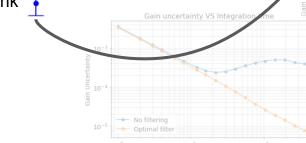
Now that I have these maps I can expand the results found in the papers

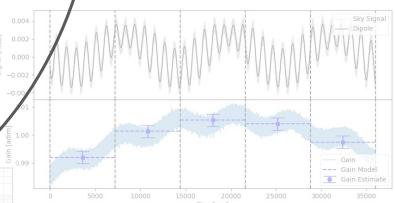
RESULTS:

Since there is no significant effect depending on T_c we prefer to calibrate on shorter timescales and track gain fluctuations

This gives us:

- The optimal calibration time: 20~30 min
- The maximum calibration error that is acceptable in each calibration chunk

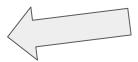




What level of noise can we accept and still calibrate with sufficient precision?

→ Step 1: What precision is needed?

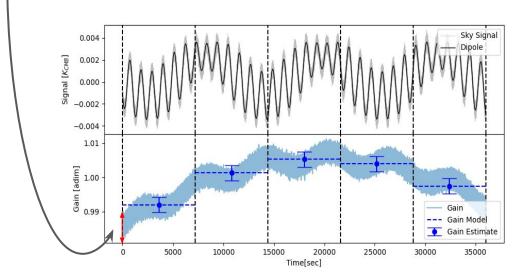
➤ Step 2: What is our requirement on the instrument?



GAIN STABILITY

We can set requirements on:

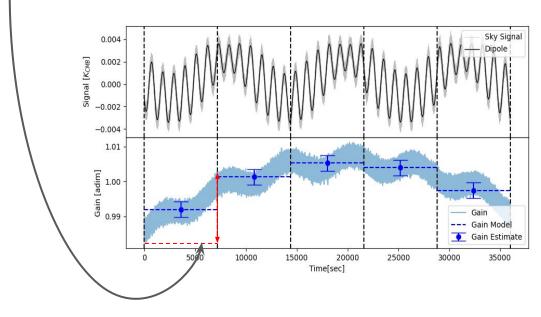
• The amplitude of noise-like gain fluctuations **P**_G



GAIN STABILITY

We can set requirements on:

- The amplitude of noise-like gain fluctuations **P**_G
- Systematic gain fluctuations on a 20-min timescale δ_{MAX}



GAIN STABILITY

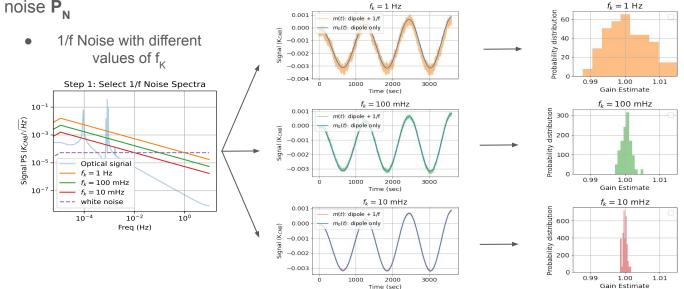
We can set requirements on:

- The amplitude of noise-like gain fluctuations P_G
- Systematic gain fluctuations on a 20-min timescale δ_{MAX}

INSTRUMENT NOISE

We can set requirements on:

• The amplitude of 1/f noise P_N



Simulate TOD

Calculate Uncertainty on our gain estimate

GAIN STABILITY

We can set requirements on:

- The amplitude of noise-like gain fluctuations P_G
- Systematic gain fluctuations on a 20-min timescale δ_{MAX}

INSTRUMENT NOISE

We can set requirements on:

- The amplitude of 1/f noise **P**_N
 - It is best summarized by the amplitude of 1/f noise at the dipole frequency $P_N(f_{DIP})$
 - Can be converted into maximum thermal fluctuations of the focal plane $P_T(f_{DIP})$

GAIN STABILITY

We can set requirements on:

- The amplitude of noise-like gain fluctuations P_G
- Systematic gain fluctuations on a 20-min timesca

INSTRUMENT NOISE

We can set requirements on:

- The amplitude of 1/f noise **P**_N
 - It is best summarized by the amplitude of
 - Can be converted into maximum thermal f

	Gain stability		Detectors' noise	
Band	P_G	δ_{MAX}	$P_N(f_{dip})$	$A_T(f_{dip})$
[GHz]	$[1/\sqrt{\text{Hz}}]$	[adim]	$[\mu K_{CMB}/\sqrt{Hz}]$	$[mK/\sqrt{Hz}]$
L1-40	$8.8 \times 10^{+0}$	7.5×10^{-1}	4.8×10^{-2}	4.4×10^{-1}
L2-50	$2.6 \times 10^{+1}$	$2.2 \times 10^{+0}$	1.4×10^{-1}	$1.7 \times 10^{+0}$
L1-60	$2.6 \times 10^{+1}$	$2.2 \times 10^{+0}$	1.4×10^{-1}	$2.5 \times 10^{+0}$
L3-68	$2.2 \times 10^{+1}$	$2.3 \times 10^{+0}$	1.4×10^{-1}	$1.4 \times 10^{+0}$
L2-68	$2.6 \times 10^{+1}$	$2.2 \times 10^{+0}$	$1.4 imes 10^{-1}$	$2.4 \times 10^{+0}$
L4-78	$3.0 \times 10^{+1}$	$3.1 \times 10^{+0}$	1.8×10^{-1}	$2.7 \times 10^{+0}$
L1-78	$3.5 \times 10^{+1}$	$3.0 \times 10^{+0}$	1.9×10^{-1}	$3.6 \times 10^{+0}$
L3-89	$1.5 \times 10^{+1}$	$1.6 \times 10^{+0}$	9.1×10^{-2}	$1.6 \times 10^{+0}$
L2-89	$1.7 \times 10^{+1}$	$1.5 \times 10^{+0}$	9.6×10^{-2}	$1.8 \times 10^{+0}$
L4-100	$2.9 \times 10^{+0}$	3.1×10^{-1}	1.8×10^{-2}	3.8×10^{-1}
L3-119	$2.9 \times 10^{+0}$	3.1×10^{-1}	1.8×10^{-2}	5.1×10^{-1}
L4-140	$7.1 \times 10^{+0}$	7.8×10^{-1}	4.6×10^{-2}	$1.9 \times 10^{+0}$
M1-100	$1.6 \times 10^{+0}$	3.1×10^{-1}	1.6×10^{-2}	$3.2 imes 10^{-1}$
M2-119	$1.4 \times 10^{+0}$	3.1×10^{-1}	1.4×10^{-2}	3.7×10^{-1}
M1-140	$3.9 \times 10^{+0}$	7.6×10^{-1}	3.9×10^{-2}	$1.2 \times 10^{+0}$
M2-166	9.7×10^{-1}	2.3×10^{-1}	1.1×10^{-2}	2.9×10^{-1}
M1-195	3.6×10^{-1}	7.6×10^{-2}	3.9×10^{-3}	$9.3 imes 10^{-2}$
H1-195	3.3×10^{-1}	7.7×10^{-2}	3.6×10^{-3}	$9.5 imes 10^{-2}$
H2-235	$7.1 imes 10^{-1}$	1.6×10^{-1}	8.1×10^{-3}	2.0×10^{-1}
H1-280	$1.2 \times 10^{+0}$	3.1×10^{-1}	1.5×10^{-2}	$2.6 imes 10^{-1}$
H2-337	1.1×10^{-1}	2.9×10^{-2}	1.5×10^{-3}	1.5×10^{-2}
H3-402	1.2×10^{-1}	2.9×10^{-2}	$1.4 imes 10^{-3}$	$5.8 imes 10^{-3}$

 Table 2: Gain calibration requirements for the LiteBIRD satellite using parametric methods for component separation. The requirements have been derived for:

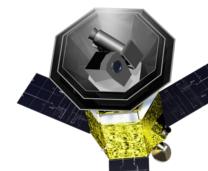
- P_G : maximum Amplitude Spectral density of noise fluctuations.
- δ_{MAX} : maximum fluctuation of the gain in 20 min.
- $P_N(f_{dip})$: maximum noise of the detectors at the dipole frequency.

• $A_T(f_{dip})$: maximum thermal fluctuations of the focal plane at the dipole frequency.

Requirements using FgBuster

Thank you for the attention!

novelli.170559@studenti.uniroma1.it



BACKUP SLIDES

Band GHz	w. fgbuster	w. NILC	
LFT-40	2.5×10^{-3}	1.4×10^{-2}	
LFT-50	7.5×10^{-3}	2.2×10^{-2}	
LFT-60	7.5×10^{-3}	1.5×10^{-2}	
LFT-68a	7.5×10^{-3}	2.1×10^{-2}	
LFT-68b	7.5×10^{-3}	3.2×10^{-2}	
LFT-78a	1.0×10^{-2}	1.3×10^{-2}	
LFT-78b	1.0×10^{-2}	1.7×10^{-2}	
LFT-89a	5.0×10^{-3}	1.0×10^{-2}	
LFT-89b	5.0×10^{-3}	2.1×10^{-2}	
LFT-100	1.0×10^{-3}	6.3×10^{-3}	
LFT-119	1.0×10^{-3}	3.3×10^{-3}	
LFT-140	2.5×10^{-3}	2.5×10^{-3}	
MFT-100	1.0×10^{-3}	4.3×10^{-3}	
MFT-119	1.0×10^{-3}	1.7×10^{-3}	
MFT-140	2.5×10^{-3}	2.3×10^{-3}	
MFT-166	7.5×10^{-4}	1.6×10^{-3}	
MFT-195	2.5×10^{-4}	2.6×10^{-3}	
HFT-195	2.5×10^{-4}	5.2×10^{-3}	
HFT-235	5.0×10^{-4}	7.0×10^{-3}	
HFT-280	1.0×10^{-3}	1.2×10^{-2}	
HFT-337	1.0×10^{-4}	1.3×10^{-2}	
HFT-402	1.0×10^{-4}	1.7×10^{-2}	

Full mission requirements

Gain calibration requirement for each LiteBIRD frequency band

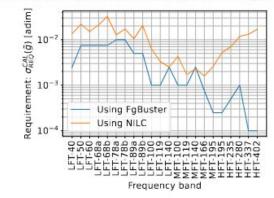


Figure 1: Gain calibration requirements for each LiteBIRD frequency band. The blue line shows the results obtained in [1] performing the component separation with fgbuster while the orange line shows the results obtained in [2] using NILC.

Table 1: Summary of the gain calibration requirements obtained in [1] (obtained using fgbuster) and in [2] (obtained using NILC). In both cases the requirements have been obtained assuming a uniform miscalibration of the gain across the sky.

a la la la la la la parte a la la

Requirements using NILC

Band [GHz]	Gain stability		Detector	Detectors' noise	
	P_G [1/ $\sqrt{\text{Hz}}$]	δ _{MAX} [adim]	$\frac{P_N(f_{dip})}{[\mu K_{CMB}/\sqrt{Hz}]}$	$\frac{P_T(f_{dip})}{[mK/\sqrt{Hz}]}$	
L1-40	$4.8 \times 10^{+1}$	$4.1 \times 10^{+0}$	2.6×10^{-1}	$2.4 \times 10^{+0}$	
L2-50	$7.7 \times 10^{+1}$	$6.5 \times 10^{+0}$	4.2×10^{-1}	$5.2 \times 10^{+0}$	
L1-60	$5.3 \times 10^{+1}$	$4.5 \times 10^{+0}$	2.9×10^{-1}	$4.3 \times 10^{+0}$	
L3-68	$6.3 \times 10^{+1}$	$6.6 \times 10^{+0}$	3.9×10^{-1}	$4.3 \times 10^{+0}$	
L2-68	$1.1 \times 10^{+2}$	$9.6 \times 10^{+0}$	6.1×10^{-1}	$1.0 \times 10^{+1}$	
L4-78	$3.8 \times 10^{+1}$	$4.0 \times 10^{+0}$	2.3×10^{-1}	$3.5 \times 10^{+0}$	
L1-78	$6.0 \times 10^{+1}$	$5.1 \times 10^{+0}$	3.3×10^{-1}	$6.3 \times 10^{+0}$	
L3-89	$3.1 \times 10^{+1}$	$3.2 \times 10^{+0}$	1.9×10^{-1}	$3.7 \times 10^{+0}$	
L2-89	$7.2 \times 10^{+1}$	$6.1 \times 10^{+0}$	3.9×10^{-1}	$7.5 \times 10^{+0}$	
L4-100	$1.9 \times 10^{+1}$	$2.0 \times 10^{+0}$	1.1×10^{-1}	$2.8 \times 10^{+0}$	
L3-119	$9.5 \times 10^{+0}$	$1.0 \times 10^{+0}$	6.0×10^{-2}	$1.6 \times 10^{+0}$	
L4-140	$7.1 \times 10^{+0}$	7.8×10^{-1}	4.6×10^{-2}	$1.9 \times 10^{+0}$	
M1-100	$7.0 \times 10^{+0}$	$1.3 \times 10^{+0}$	6.7×10^{-2}	$1.3 \times 10^{+0}$	
M2-119	$2.4 \times 10^{+0}$	5.3×10^{-1}	2.4×10^{-2}	6.4×10^{-1}	
M1-140	$3.6 \times 10^{+0}$	7.0×10^{-1}	3.6×10^{-2}	$1.2 \times 10^{+0}$	
M2-166	$2.1 \times 10^{+0}$	4.9×10^{-1}	2.3×10^{-2}	6.7×10^{-1}	
M1-195	$3.7 \times 10^{+0}$	7.9×10^{-1}	4.1×10^{-2}	$1.2 \times 10^{+0}$	
H1-195	$6.8 \times 10^{+0}$	$1.6 \times 10^{+0}$	7.6×10^{-2}	$2.1 \times 10^{+0}$	
H2-235	$1.0 \times 10^{+1}$	$2.2 \times 10^{+0}$	1.1×10^{-1}	$2.6 \times 10^{+0}$	
H1-280	$1.4 \times 10^{+1}$	$3.6 \times 10^{+0}$	1.7×10^{-1}	$3.2 \times 10^{+0}$	
H2-337	$1.4 \times 10^{+1}$	$3.8 \times 10^{+0}$	2.1×10^{-1}	$2.3 \times 10^{+0}$	
H3-402	$2.0 \times 10^{+1}$	$4.9 \times 10^{+0}$	3.0×10^{-1}	$1.2 \times 10^{+0}$	

Table 3: Gain calibration requirements for the LiteBIRD satellite using minimum-variance methods for component separation. The requirements have been derived for:

- PG: maximum amplitude spectral density of noise fluctuations.
- δ_{MAX} : maximum fluctuation of the gain in 20 min.
- $P_N(f_{dip})$: maximum noise of the detectors at the dipole frequency.
- $P_T(f_{dip})$: maximum thermal fluctuations of the focal plane at the dipole frequency.

I want to be able to simulate the effect of multiple calibrations on the sky

- To make realistic simulations I need
 - to know how the gain uncertainty scales with the calibration time

To estimate our ability to determine g we can take a simplified data model

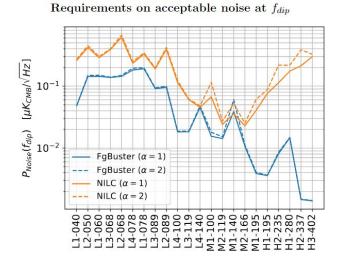
$$d_{i}(t) = g_{i} \left(\begin{matrix} g_{i} \\ m(t) \end{matrix} + n^{tot}(t) \end{matrix} \right)$$

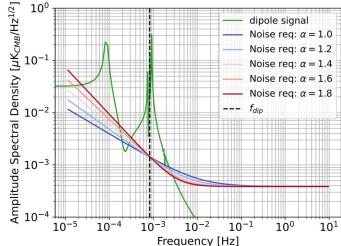
And convolve it with a reference signal:

$$\tilde{g}^{\text{gain estimate}}_{\tilde{g}} = \frac{\int d(t) \, m_0(t) \, dt}{\int m_0(t)^2 \, dt} = \frac{\int g \left(m(t) + n(t) \right) m_0(t) \, dt}{\int m_0(t)^2 \, dt} \approx g \left(1 + \frac{\int n(t) \, m_0(t) \, dt}{\int m_0(t)^2 \, dt} \right)$$

Results:

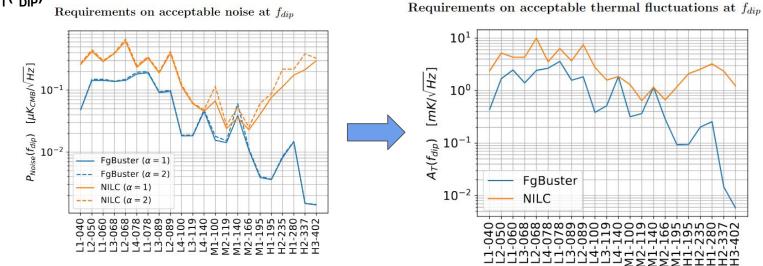
- The requirements on the noise level can be summarized into a requirement on the noise at the dipole frequency: P_N(f_{DIP})
 - (removes any dependency from the noise power spectrum shape)





Results:

- The requirements on the noise level can be summarized into a requirement on the noise at the dipole frequency: P_N(f_{DIP})
 - (removes any dependency from the shape of the noise)
- Under the assumption that the 1/f noise is mainly produced by thermal fluctuation of the focal plane we can convert this into a requirement on the fluctuations of the focal plane at the dipole frequency: A_T(f_{DIP})



Chisall Folks