



Instituto de Astrofísica de Canarias



UNIVERSITÀ DEGLI STUDI DI MILANO

CMB-CAL 2024 @Bicocca



# UAV-Based Artificial Source for LSPE-Strip and Overview of First Tests on QUIJOTE

<u>F. Paonessa</u>, G. Virone, G. Addamo, M. Bersanelli, C. Franceschet, R.T. Génova-Santos, R. Hoyland, C.H. López-Caraballo, J.A. Rubiño-Martín

#### UAV-Based Antenna Testing: CNR-IEIIT's Expertise and Role in LSPE-Strip



- CNR-IEIIT's expertise: since 2013 in Low Frequency Aperture Array characterization (SKA-Low @ 50–350 MHz)
- LSPE-Strip: ground-based cluster of 49 coherent Polarimeters @ Q-band (44 GHz) for CMB measurements on large angular scale
- In-situ beam verification and instrument characterization through CNR's UAV system





CMB-CAL 2024 @Bicocca

#### **RF** Payload Design Aspects





F. Paonessa et al., "Design and Verification of a **O-Band Test Source for UAV-Based Radiation** Pattern Measurements," in IEEE Trans. Instrum. Meas., Dec. 2020.



#### Challenges of RF payload design @ Q-band: motor vibration, temperature transients

(1) tunable frequency synthesizer (CW @ X-band) (2) active x4 multiplier full Qband 33–50 GHz (3) waveguide coupler (4) bend, twist, attenuator, horn (5) amplitude detector (6) precision V amp $\rightarrow$  output to

autopilot's ADC

# Payload Validation with Known Antenna @ 44 GHz



Validation w/ both indoor tests (power & frequency stability) and outdoor radiation pattern measurements





# Payload Validation with Known Antenna @ 44 GHz

Known horn as

reference



Validation w/ both indoor tests (power & frequency stability) and outdoor radiation pattern measurements





- Comparison both with anechoic chamber measurement and simulation
- Agreement

5

- RMS = 0.15 dB (outdoor simulation)
- RMS = 0.11 dB (chamber simulation)
- RMS = 0.21 dB (outdoor chamber)

(weighted log-difference w/ simulation as weight func)

# **QUIJOTE** Campaign: Objectives

- Characterization of the **QUIJOTE beam patterns** at both low frequency (TGI, 33 GHz) & high frequency (FGI, 40 GHz)
- Objectives
  - telescope's performance verification under actual operating conditions
  - insights into UAV system performance for further optimization (future Strip campaign)



QUIJOTE- Q-U-I JOint TEnerife CMB experiment Credit: Instituto de Astrofísica de Canarias IAC

# **QUIJOTE** Campaign: Objectives

- Characterization of the QUIJOTE beam patterns at both low frequency (TGI, 33 GHz) & high frequency (FGI, 40 GHz)
- Objectives
  - telescope's performance verification under actual operating conditions
  - insights into UAV system performance for further optimization (future Strip campaign)
- Measurement types: <u>front-end output</u> & polarimeter outputs (Stokes params)





QUIJOTE- Q-U-I JOint TEnerife CMB experiment Credit: Instituto de Astrofísica de Canarias IAC



#### **QUIJOTE** Campaign: Strategies



Aerial view of Teide Observatory in Tenerife. © Google Maps, 2024.

HOVERING POINT @120m above tel. Vertical linear pol.

QUIJOTE doing raster centered @ (Az,El) = (260°,35°)

#### **QUIJOTE Campaign: Strategies**



Aerial view of Teide Observatory in Tenerife. © Google Maps, 2024.

**HOVERING POINT** @120m above tel. Vertical linear pol.

**QUIJOTE** doing raster centered @  $(Az, El) = (260^{\circ}, 35^{\circ})$ 

NF measurements compared to NF simulations

position meas accuracy

~3 cm → ~8 mdegs / 30 arcsec

#### **QUIJOTE Campaign: Results**





#### **QUIJOTE** Campaign: Results





# **QUIJOTE** Campaign: Aspects of Data Processing







## QUIJOTE Campaign: Results @ Front-end Output







Combination of Telescope + UAV + Spectrum analyzer

Spectrum analyzer acquires 50% of the time

## QUIJOTE Campaign: Results @ Front-end Output







#### QUIJOTE Campaign: Results @ Front-end Output



improving dynamic range & covered area through several measurements (flights) w/ different power

# 

#### QUIJOTE Campaign: Results @ Front-end Output



# QUIJOTE Campaign: Results @ Polarimeter Outputs





Linearity hypothesis & equalization @ sky level (no source)



# QUIJOTE Campaign: Results @ Polarimeter Outputs





#### **QUIJOTE** Campaign: Results Comparison





# QUIJOTE Campaign: Results Overview @ 33 GHz (TGI)





# QUIJOTE Campaign: Results Overview @ 40 GHz (FGI)





#### Conclusion



- Modeling & testing approaches validated
  - double-checked w/ two receivers on same feed

#### • Preliminary data highlight high accuracy depending on scan strategy

- High accuracy on horizontal cut
- Additional experimental activity needed for further considerations on vertical cut & complete 2D maps
- Expected updates in view of Strip campaign
  - More strategies (vertical rasters w/ telescope, different elevations, rasters with UAV)
  - Sensor improvements of UAV system (e.g., attitude)