COSmological Microwave **Observations Calib**ration source

A. Ritacco (CNRS, LPSC institute, Grenoble) on behalf of the COSMOCal international collaboration

IPAG

Shocal

Outline

- 1. Scientific motivations
- 2. COSMOCal project overview
- 3. Proof of concept at 260 GHz and full tests
- 4. Proposal for space

Probing the inflation theory and beyond

Alessia Ritacco

Ι

A SCIENCE CASE: the cosmic birefringence

Cosmic birefringence naturally convert *E*<->*B*

Minami, Yuto et al. 2018

Insights into:

- Fundamental particles
- Nature of dark matter
- Primordial magnetic fields

HINTs on Cosmic Birefringence from Planck data

Current foreground models lack of information

Dust EB decorrelation with freq. due to polarization angle **coupling between dust physics and magnetic fields.**

Ritacco et al. A&A, 670, A163 (**2023**) Vacher et al. A&A 672, A146 (**2023**)

Boulanger's talk

Accuracy in dust emission measurement and absolute angle calibration is needed

Magnetized dusty interstellar medium

H. Ajeddig & **NIKA2** Core team EPJ Web of Conferences **257**, 00002

- → *Planck* polarization observations had also a major **impact** on **Galactic astrophysics**
- → Ground based observations deepen this unique perspective on dust and magnetic fields
- → Precise measurements of polarization angles are also essential here

Alessia Ritacco

CRAB nebula: a sky calibrator for CMB experiments

Alessia Ritacco

1

CMB-CAL @ BICOCCA

7

Absolute calibration for large aperture telescopes

STRATEGY

2

- Calibration of large telescopes
- Observation of sky references

DELIVERABLE

Polarization maps of astrophysical references (in a large band)

FREQUENCY RANGE 90 - 300 GHz

 \rightarrow to provide also a reference for dust physics and foreground maps

Institut de Radioastronomie

COSMOCal timeline

2022	2023	2024	2025-2026	2029
Development of the first prototype to work @ 260 GHz and be tested with NIKA2/30m.	Tests of the components L. Bizzarri 's master thesis (defended in Sept. 2024) See his poster	Full prototype's tests See S. Savorgnano's talk.	Development of the space prototype	Expected launch
			Dim-origines proposal (500 kEuro) submitted.	
Funded so far by			co-PIs: DIMORIGINES F. Boulanger, A. Ritacco	

COSMOCal prototype @ 260 GHz

Ritacco, Bizzarri, Savorgnano et al. 2024 accepted PASP journal <u>https://arxiv.org/abs/2405.12135</u>

Alessia Ritacco

COSMOCal full tests

In laboratory tests @ LPSC

Goal: 0.1 deg. Results: 0.06 deg. Ritacco, Bizzarri, Savorgnano et al. 2024 accepted PASP journal <u>https://arxiv.org/abs/2405.12135</u>

 \rightarrow Savorgnano's talk

Independent measurements of ψ agree within 1-3 % in absolute value.

Alessia Ritacco

CMB-CAL @ BICOCCA

Pioneering measurements with a large antenna

Eutelsat partnership

- Partnership initiated through CENSUS in February 2024.
- COSMOCal to be launched in 2029 on a platform of Eutelsat Group in GEO.
- Source visible from both Europe and Atacama.
- Payload design coordinated with engineers from Eutelsat Group.
- COSMOCal specifications to be included in Eutelsat's call for tender to be issued in 2025.
- Partnership opens a new perspective for space astrophysics.

4

COSMOCal space payload

This design aims to minimize the payload volume. A mechanism allows the source to be directed to Europe or Chile.

Alessia Ritacco

4

COSMOCal: microwave source

Design of a high-power microwave source with three frequency channels (90, 150 & 270 GHz).

Alessia Ritacco

4

COSMOCal summary

- Timely contribution to **paramount goals of observational cosmology**, in phase with the deployment of ambitious CMB experiments.
- Deeper perspective on **dust polarization** & the **physics of the magnetized ISM**.
- Training opportunities in space instrumentation, microwave technology, astrophysics and cosmology.
- Space proposal supported by a **proof-of-concept** instrument successfully tested with NIKA2 at the **IRAM 30m**. *Data analysis is ongoing on NIKA2 data*.
- **Cooperation between private and public entities** minimizing the proliferation of spacecraft in orbit around the Earth.

