Observations of the early Universe at millimeter wavelengths: **The Grenoble GIS Contribution**

The GIS-KID: our activities are always driven by real instruments... GIS KIDS

A. Catalano

CMB-CAL

KID Development

A. Catalano

GIS KIDS

Photon noise Detectors in 6 bands (3mm - 550 µm) for ground-based or space borne typical optical loads [Catalano et al.,A&A 2020]

> Acquiring a new evaporation machine. Up to 20 cm wafer

CMB-CAL - November 6th 2024

Instrumental Development GIS KIDS

Cryogenics

Electronics

A. Catalano

cleaned data

200

Time (s)

300

100

 \bigcirc

KID Operation and Photometry

The incoming photons break Cooper pairs (supercurrent carriers) OUT IN in a superconducting LC resonator \rightarrow measurable signals (dB) 0 **n-1** -55 ^{|_} 0.9 - Very few steps in the manufacturing process (1 for AI KID) - Frequency multi-plexing (600 per feedline) Power (dB) - Time constant from 0.01 to 0.2 ms δP - Very good linearity (about 1/10⁵) - Not vey sensitive to the temperature fluctuation, mechanical vibrations and cosmic rays (1000 time less than Planck bolometers). $\delta f \rightarrow$ Difficult challenges in operating with KIDs: convert the Approach for Photometers / Polarimeters observed in phase (I(t)) and in quadrature (Q(t)) Modulate continuoisly the LO carrier frequency components to absorbed optical power. • Evaluate for each point I,Q,dI/df,dQ/df • Mesure $\Delta I, \Delta Q$ • Evaluate $\delta \mathbf{f} \propto \delta \mathbf{P}$ projecting $\Delta \mathbf{I}, \Delta \mathbf{Q}$ on the reference gradient Raw data Cleaned data (Jy)Approach for FTS Flux Q [a. u.] 00 integration with no modulation. •Evaluate for each point I,Q,dI/df,dQ/df Ò • Mesure $\Delta I, \Delta Q$ Fasano et al, A&A, 202 100 200 300 () $I_2 I_3 I_1$ Time (s) I [a.u.]

A. Catalano

GIS KIDS

CMB-C

1.1

Frequency (Hz)

1.2

Our approach on KID development: Photometers / Polarimeters GIS KIDS Lumped Element KID More details in Sofia's Talk..... **Dual Polarisation** (3rd-order Hilbert pattern) Single Polarisation Inductance Filled arrays LEKID: Capacitor Large filling factor Very high quantum efficiency • in a 30% mm-band **Easy to fabricate Feedline 50** Ω HWP HWP rotating cryostat at $\theta = \omega t$ polariser incoming polarised light detector Observations of I,Q,U 150 200 250 50 100 HWP angle [*] CMB-CAL

Continuous Rotation of an HWP permits quasi-simultaneous Stokes parameters

NKA2 State of the Arts: Polarisation with NIKA2

Concerto CONCERTO Project

Original optical design adopted for CONCERTO:

CMB-CAL

- November 6th 2024

&

CONCERTO: few preliminary results and spectral calibration

CMB-CA

Telescope (SAT) to Simons Observatory existing telescope

More precise measurement of the contamination of galactic dust emissions

- Increase the lever arm on the dust SED fit
- Lower the noise on the dust template

CMB-CAL

Starting from the constraints imposed by SO, we propose to adapt the French SAT to host a **30k-KID focal plane with** adapted optics

KAIROS

SIM OBSER FRANCE

from US SAT

CMB-CAL

Perspectives : Polarimeters — The French SAT for SO

Entrance Pupil = 420 mm Total F.o.V. = 35 Deg. **# of channels = 2 BandPass** = 200-400 GHz # of Optical Tubes = 19 F.o.V per Tube = 6 Deg Total # of Si lenses per Tube = 5 Total # of Det. ~ 30k # of LEKID array = 36 (4-inches wafer) **# of Readout Boards** = 50-70 (multiplex. Factor~ 600-800) Total Data Rate ~ 100 MBytes/s

.... to French SAT

Conclusions

KID Technology

- French KID technology represents the state-of-the-art worldwide for mm and sub-mm astrophysics. - GIS LEKID technology has today a TRL high enough to be used for the next generation CMB experiments.

Photometers/Polarimeters/FTS Instruments

- worldwide
- FTS Spectroscopy analysis with CONCERTO is in progress, first spectral results are coming out soon.

Perspectives

- technology instrument to the SO telescopes

- Several scientific results thanks to **NIKA 2** for our collaboration but also for the mm astrophysical community

- Sensitivity for photometers and Polarimetry applications is in line with the expectations of S3 and S4 effort. Big effort of the French community to contribute to the **Simons Observatory project** by adding a 100% French

Our approach on KID development: Spectrometers

CIIIS

BEAMS (FOV) $R = 100 \div 1000$

A. Catalano

CMB-CAL

Perspectives : Spectrometers R&D on KID detectors in progress....

KID/Readout Development : Sensitivity

Spectral range covering, sensitivity, Cosmic Rays impact, polarisation study

The Kinetic Inductance Detectors

photon detection principle :

 $h\nu > 2\Delta$

The incoming photons break Cooper pairs (supercurrent carriers) in a superconducting LC resonator \rightarrow measurable signals

|E|

Each 400 pixels are connected to a single transmission line

CMB-CAL

READOUT Development

2011: NIKEL proto

128 pixels 500 MHz bandwidth external RF

2012: NIKEL (NIKA)

400 pixels 500 MHz bandwidth external RF

[Bourrion+2011, 2012, 2016, 2022, Bounmy+2022]

400 pixels 400 pixels 1 GHz bandwidth 500 MHz bandwidth 30 watts power RF in the board Compact crate with up to 10 boards - November 6th 2024 CMB-CAL

2016: NIKEL AMC (NIKA2/KISS)

2020: NIKEL AMC v2 (CONCERTO)

NIKA2 collaboration

NIKA2 Worldwide

- 163 scientists from 33 Institutes in 9 countries (France, Spain, Italy, Ireland, Belgium, Greece, UK, Iran & USA).
- specialists in instrumentation, data analysis, and scientific interpretation in astrophysics and cosmology

NIKA2 France

- 112 specialists from 13 laboratories affiliated with IN2P3, INSU, INP, CEA and IRAM

NIKA2 IN2P3

- 23 scientists at LPSC and IP2I-Lyon (~2-3 FTE/yrs since 15 yrs)
- Leading responsabilities : Project Scientist (J.F. Macías-Pérez), President of the Editorial Board (L. Perotto) ...
- Major contributions to the construction: Readout electronics (O. Bourrion) + strong involvement of the services
- Key role in the scientific exploitation (PI of a Large Program)

NIKA2 MoU

- Responsability of the construction, commissioning, maintenance & upgrades until ~2030

Origin: Synergy IN2P3-INSU-INP that has proven its efficiency since 20 yrs (Archeops, Planck, NIKA, KISS, NIKA2, Concerto)

Leading position: Principal Investigator: A. Monfardini I. Néel, INP; Project Scientist: J.F. Macías-Pérez LPSC/IN2P3

1300 hours of Guaranteed Time at the IRAM 30-m telescope distributed in 5 Large Programs, one of which led by IN2P3

CMB-C - November 6th 2024

NIKA2 in a nutshell

IRAM 30-meter telescope, and operating since 2017

Thousands KID-based camera...

One of the two 1140 KID arrays at 260 GHz

2870m, Spain

diameter...

A millimetric continuum camera of 2 900 Kinetic Inductance Detectors (KID), operating at 150 and 260 GHz, installed at the

...and sensible to polarization at 260 GHz

CONCERTO Project

- Spectro-Interferometer (spectral resolution R > 100) - Observing between 120 GHz - 350 GHz from 12 m APEX Tel.

- Large Field of View (20 Arcmin)
- LEKID Technology
- Collaboration LAM Inst. Néel LPSC IPAG

Main Goals: 1200 hours Observations of the [CII]-emission line at high redshift 20 hours SZ signal from galaxy cluster RXJ1347–1145 (z = 0.45)

Pathfinder: KISS installed at Qujiote (Tenerife) since end of 2018. Still observing **Status:** Concerto is installed at 12 m APEX telescope since April 2021 Schedule: Science Verification in June (2 weeks), Regular observations started in August 2021 until June 2023.

Fundings : ERC Advanced Grant Duration of the project : 60 months Staring : 1st January 2019 P.I.: Guilaine Lagache (LAM)

Telescope primary mirror diameter [m]	12
Field-of-view diameter [arcmin]	20
Absolute spectral resolution [GHz]	≥ 1
Relative spectral resolution R $[\#]$	1-30
Frequency range HF LF [GHz]	195-310 1
Pixels on Sky HF LF $[#]$	2,152
Instrument geometrical throughput $[sr m^2]$	2.5×1
Single Pixel geometrical throughput $[sr m^2]$	1.16×1
Data rate [MBytes/sec]	128
	-

CONCERTO Design & Signal Processing

CONCERTO Enslavements

A. Catalano

Cutiers C

CMB-CAL

- 100mK Dilution **Cryostat fully** remote controlled
- MPI moveable roof mirrors with very low vibration level
- Large Size **Polarizers**
- Polypropylene Lenses with **Geometrical AR.**
- 10 Al Mirrors

CONCERTO Commissioning

CONCERTO First Photometric Observations

- 16 minutes integration
- LF Array (Blue)
- HF Array (Red)

CONCERTO Only

37 x 25 arcmin² field

CMB-CA

