Polarization Modulator Unit: angular accuracy and wobbling calibration

Giulia Barbieri Ripamonti G31 - Sapienza University of Rome

07/11/2024 **CMB-CAL 2024**

Missions' Requirements

LSPE/SWIPE

- Balloon-borne mission
- 3 bands, 120 250 GHz
- 326 TES bolometers
- + LSPE/Strip

	SWIPE	MFT	HFT
Angular Accuracy	< 10'	< 1'	< 5'
Power Load	< 40mW	< 4	mW
Temperature	< 20K	< 20K	< 20K
Wobbling	< 30'	< 30'	< 30'

LiteBIRD

- Satellite
- 15 bands, 40 400 GHz
- 3 telescopes

Missions' Requirements

	SWIPE	MFT	HFT	Systematic Effects / Issues
Angular Accuracy	< 10'	< 1'	< 5'	Reconstruct with good accuracy the HWP angle to avoid leakage from E-modes to B-modes
Power Load	< 40mW	< 4mW		Limited thermal budget Minimize the load on the detectors
Temperature	< 20K	< 20K	< 20K	Minimize spurious polarized emissions of the HWP Detectors' calibration is affected by the HWP's temperature
Wobbling	< 30'	< 30'	< 30'	Has to be monitored both for optical and mechanical issues

Polarization Modulator Unit

Continuously-rotating metal-mesh Half-Wave Plate (500mm diameter)

Cryogenic environment: 5K

Subsystems:

- Superconducting Magnetic Bearing
- Clamp/release system
- Electromagnetic motor
- Optical encoders
- Hall sensors
- Capacitive sensors

PMU - Superconducting Magnetic Bearing

- 18 YBCO bulks
- 2 NdFeB segmented rings

PMU - Clamp/Release system

Spring Plunger

The actuator is holding the SMB rotor

The plunger is retracted in the radial direction, releasing the SMB rotor.

Small cylinders are inserted, latching the head in the retracted position.

F. Columbro, P. de Bernardis, and S. Masi. "A clamp and release system for superconducting magnetic bearings". Review of Scientific Instruments. 2018.

PMU - Electromagnetic Motor

PMU - Rotation

PMU - Optical Encoder

- Absolute encoder—> single slit
- Relative encoder—> 64 evenly spaced slits

Measurements and Results

1. Stability / Angular Accuracy

2. Friction \rightarrow Power Load \rightarrow HWP temperature

3. Capacitive sensors → Distance measurements → Wobbling
→ Temperature measurements → HWP temperature

1. Stability

The PID feedback control stabilizes the rotation

Long-term **stability** < 0.1%

1. Angular Accuracy

a leakage from E-modes to B-modes

F. Columbro, P. de Bernardis et al. "A polarization modulator unit for the mid- and high-frequency telescopes of the LiteBIRD mission". Proc. SPIE 11443. 2020.

2. Friction

Minimize the **power dissipated** during the rotation

Hall sensor HE144P from Asensor -> 10uT resolution

3. Capacitive Sensors

Capacitors allow to monitor:

- Levitation height $->V_C = AR\omega V_{in}(\epsilon_0 \frac{s}{2d} + C^*)$
- **Temperature variations** -> Thermistor: R(T)

P. de Bernardis, F. Columbro et al. "A simple method to measure the temperature and levitation height of devices rotating at cryogenic temperatures." Rev. Sci. Instrum. 2020.

3 plates mounted on the stator:

- 2 lines with a high frequency bias (40 MHz)
- 1 line with a low frequency bias (90 kHz) and a lockin amplifier

9 plates on the rotor:

- 8 monitor the levitation height
- 1 coupled with thermistor monitors temperature (#4)

3. Distance Measurements

Data from 1 capacitive sensor over a 360° rotation

Sensor calibration

3. Distance Measurements

Estimated **drop of the rotor**: $\Delta h = 0.43$ mm

F. Columbro, G. Barbieri Ripamonti et al. "Capacitive sensors for the polarization modulator unit of the Mid- and High- Frequency Telescopes of LiteBIRD space mission". Proceedings of SPIE. 2024.

Wobbling

Error on the levitation height: $\sigma \sim 20 \mu m$ LSPE/SWIPE: Wobbling Angle < 20 arcsec

3. Temperature Measurements

Goal: to measure **rotor's temperature variations** during the rotation

Line **with** the thermistor

- -> The thermistor on the rotor has a resistance change very small with respect to the impedance of the readout circuit

HWP Cryogenic Tests

Goal: to measure the **optical performance of the HWP** at cryogenic temperature —> Mueller matrix

Hardware Implementation

Summary and Conclusions

Angular Accuracy

The angular resolution is $\sim 0.1 - 0.2$ arcmin between 0.3 and 1 Hz

Wobbling

The wobbling during the rotation has been measured to be $\Delta\theta < 20$ arcsec

Power Load & Temperature

The magnet will be replaced to reduce friction Rotor's temperature measurement is under development and promising

Future Goal

Cryogenic optical tests of the HWP will be carried out in the near future

Waveguides - Preliminary Measurements

The waveguides have been designed and are currently being tested at room temperature

1E+11

1E+11

Friction and Thermal Conductivity

Groove ring: Aluminium —> G10 Heads: Teflon —> Brass

Friction should be reduced

-> test to understand the contribution from this ring

The new configuration reduces the **cooldown time**

We gained a factor 2 in the **conductive** heat transfer

Temperature Measurements – Optimization

Resistance of the current thermistor as a function of temperature

Currently: $\Delta T = (100K - 20K)$ New thermometer: $\Delta T = (100K)$

We could gain a fa

Response of the readout circuit to different resistances

