Calibration Techniques for a Simons Observatory 90/150 GHz Small Aperture Telescope

Samuel Day-Weiss Princeton University

Outline

- SAT calibration status
 - Bringing together all of SO's calibration development efforts
 - A focus on data from "SATP3"
 - Optical design overview
- Beam calibration
 - Intensity beam: preliminary profiles with Jupiter
 - Polarization beam: new challenges and analysis plan
- Absolute polarization angle calibration
 - Preliminary observations of Tau A (Crab Nebula)
- Summary

The Simons Observatory (SO) SATs: SATP3

- In-field integration began: Oct 2023
- First Jupiter/CMB observations: December 2023
- 3 distinct observing periods marked by instrument upgrades to improve systematics
- ~2000 hours of CMB observations
- ~460 hours of calibration observations (source scans primarily)

This talk:

- Calibration observations since July 31 2024
- 32 observations of Jupiter
- 25 observations of Tau A

Photo credit: from the drone calibrator!

Chajnantor Plateau. ~5200 meters

Optical design

(see Galitzki et al., 2024 for more details on the cryostat itself)

On Sky

ws4

ws0

ws1

ws3

ws2

- **UHMWPE** window
- 40K IR filter stack
- CHWP
 - Pancharatnam-style 3-layer sapphire stack Ο
 - 2 layers of meta-material AR coating 0 (alumina)
 - Superconducting magnetic bearing (see Ο Yamada et al., 2024, similar to PB-2b design)
- 4K meta-material AR coated alumina filter
- 1K aperture stop
- 3 refractive lenses
- 1K LPE filters
- ~12,000 optically coupled TESes
 - Feedhorn-OMT coupled Ο
 - Target ~70-80% (PWV dependent) yield Ο successfully going into current CMB maps

10 cm PTC1 IR filter (50 K) Sapphire half-wave plate (50 K) _ Yamada et al. (2024)Silicon lenses (1 K) refrigerator Trusses PTC1 stage (40 K) PTC2 stage (4 K) - Focal plane (100 mK) ws5 ws6

Beam calibration: Intensity

Why Jupiter?

- High S/N at our observing frequencies
- Essential for measuring solid angle
 - \circ Jup solid angle varied from 0.02 0.03 usr
 - ~72, 36 usr beams (point source!)
 - Already 2-3% constraint on solid angle
- Can be used as an independent $pW \to T_cmb$ calibrator

Map Making

- Inverse-variance weighted filter-binned map
- Planet mask + polynomial interpolation
- PCA calculation and mode subtraction

Challenges

- Source availability/coverage with wide focal plane
- 32 obs split between wafers (one at at time)

preliminary

Beam calibration: Intensity

Beam calibration: Polarization

- Beams
 - Drone measurements
 - Tau A (far side lobes not accessible)
- Monopole leakage
 - From HWP synchronous signal
 - Quadratic radial increase expected (Essinger-Hileman et al, 2016)
- Jupiter
 - Higher order leakage terms
 - Extrapolation of synchrotron emission from lower frequencies puts linear pol fraction < 0.2% (Weiland et al. (2011))
 - Expansion in Gauss-Hermite functions (ABS did monopole, dipole, quadrupole terms, motivated by the HWP model)
- Challenges
 - Components above the HWP
 - PB-2B dominated by monopole of primary mirror
 - ABS HWP first optical element
 - New anti-reflective coating
- Ongoing work to improve the ABS model for SO
 CMB-CAL @ Bicocca | November 7, 2024

Top: P [K, antenna] with pol angles

Absolute pol. angle calibration: Tau A

- \sim 6' x 4' extended source
 - J083.627 + 022.021 \bigcirc
 - Supernova remnant 0
 - Synchrotron emission from central \bigcirc pulsar interacting with surrounding gas

- Polarization angle known to $\sim 0.27^{\circ}$ (J. Aumont et al, 2020)
 - This assumes no correlated systematic \bigcirc errors between frequencies
 - Can have frequency dependence 0
 - SAT req. 0.4 deg 0
 - Combine with wire grid and drone 0 measurements

~28' resolution

Absolute pol. angle calibration: Tau A

- 25 observations between both wafers
- Statistical uncertainties in pol angle:
 - ~0.3 deg at 90 GHz
 - ~0.4 deg at 150 GHz
- 1 sigma bound on polarization efficiency > 78% (using pol. intensity)
 - Far tighter constraints from calibration to the CMB

Absolute pol. angle calibration: Tau A

- A possible source of pol. angle systematic uncertainty: **band center uncertainty**
- Planned:
 - FTS campaign with linearly polarized source
 - Measure HWP polarization modulation properties as well as the band centers

• New and exciting data as the SATs exit the initial commissioning phase!

- Jupiter is an optimal source for intensity and leakage beam mapping
 - Already important confirmations of our pointing, gain calibration, and beam mapping methods
 - Optimizing coverage is difficult

- Tau A will serve as a reliable source for absolute polarization angle calibration
 - Constraints on angle likely worse than the SAT requirement
 - Will have to combine with wire grid and drone measurements

Thank You

