Polarization angles mitigation in Component Separation for r and β_b Measurements

COSMO-CAL 08/11/2024 **Baptiste Jost (IPMU)**

1

Parametric Component SeparationL U_1 Q_{n}

Input frequency maps

Input frequency maps Component maps

Input frequency maps Component maps

Input frequency maps Component maps

The Mixing Matrix
\n
$$
\mathbf{d}_p = \mathbf{A}(\beta_{fg})\mathbf{s}_p + \mathbf{n}_p
$$
\n
$$
A(\{\beta_{fg}\}) = \begin{pmatrix}\n1 & 0 & A_1^d & 0 & A_1^s & 0 \\
0 & 1 & 0 & A_1^d & 0 & A_1^s \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 0 & A_n^d & 0 & A_n^s & 0 \\
0 & 1 & 0 & A_n^d & 0 & A_n^s \\
\hline\n\text{CMB} & \text{Dust} & \text{Synchronization} \\
\hline\n\text{T}_d, \beta_d & \beta_s\n\end{pmatrix}
$$

Assumed foreground emission laws:

- **modified black-body** for dust
- **power law** for synchrotron

Variation across the sky is possible (Errard et al. 2019)

Spectral Likelihood

Using the "spectral likelihood" (Stompor et al 2008) we only have to estimate foreground parameters:

$$
-2\ln\mathcal{L}_{\text{spec}}(\beta_{\text{fg}}) = \text{cst} - (\mathbf{A}^{\text{t}}\mathbf{N}^{-1}\mathbf{d})^{\text{t}}(\mathbf{A}^{\text{t}}\mathbf{N}^{-1}\mathbf{A})^{-1}(\mathbf{A}^{\text{t}}\mathbf{N}^{-1}\mathbf{d})
$$

The component maps are then given by:

$$
\mathbf{\hat{s}}=(\mathbf{\hat{A}}^t\mathbf{N}^{-1}\mathbf{\hat{A}})^{-1}\mathbf{\hat{A}}^t\mathbf{N}^{-1}\mathbf{d}
$$

But what about instrumental parameters?

The Effect of Uncontrolled Polarization Angles (a Toy Model)

polarisation angles

$$
\text{Adding Polarization Angle as a Parameter} \quad \mathbf{d}_p = \mathbf{X}(\{\alpha\}) \mathbf{A}(\beta_{\text{fg}}) \mathbf{s}_p + \mathbf{n}_p
$$
\n
$$
X(\{\alpha_1, ..., \alpha_{n_f}\}) = \begin{pmatrix} \cos(2\alpha_1) & \sin(2\alpha_1) & 0 \\ -\sin(2\alpha_1) & \cos(2\alpha_1) & 0 \\ 0 & \cos(2\alpha_{n_f}) & \sin(2\alpha_{n_f}) \\ 0 & -\sin(2\alpha_{n_f}) & \cos(2\alpha_{n_f}) \end{pmatrix}
$$

- Relative angles can be retrieved thanks to frequency dependence in mixing matrix!
- What about the absolute angle?

Include Calibration Priors in Component Separation

Adding priors from calibration (e.g. wire-grid, drone, Tau-A, cube-sat …) lifts the degeneracy between birefringence and absolute polarization angle.

Generalized component-separation \rightarrow CMB map cleaned and corrected for miscalibration.

$$
-2\ln \mathcal{L}_{\text{spec}}(\beta_{\text{fg}}, \{\alpha\}) = \text{cst} - (\boldsymbol{\Lambda}^{\text{t}}\boldsymbol{\Lambda}^{-1}\boldsymbol{\Lambda})^{-1}(\boldsymbol{\Lambda}^{\text{t}}\boldsymbol{\Lambda}^{-1}\boldsymbol{\Lambda}) \\ + \sum_{\text{i=1}}^{\text{n}_{\text{f}}} \frac{(\alpha_{\text{i}} - \alpha_{\text{i}}^{\text{cal}})^2}{\sigma_{\alpha_{\text{i}}^{\text{cal}}}} \\
$$

Cosmological Likelihood

- **Include polarization angle rotation in cosmological likelihood:** corrects for remaining absolute angle (à la self calibration Keating et al. 2012) after component separation
- No E→B leakage: r is retrieved
- Calibration priors \Rightarrow remaining absolute angle = birefringence angle

$$
\mathbf{C}_{\ell}^{\text{theory}}(r,\beta_b) = \mathbf{R}(\beta_b) \begin{pmatrix} C_{\ell}^{EE,\text{prim}} & 0\\ 0 & r.C_{\ell}^{BB,\text{prim}} + C_{\ell}^{BB,\text{lens}} \end{pmatrix} \mathbf{R}^{-1}(\beta_b) + \mathbf{C}_{\ell}^{\text{noise}}
$$

-2 log $\mathcal{L}^{\text{cosmo}}(r,\beta_b) = \sum_{\ell} f_{\text{sky}}(2\ell+1) \left[\mathbf{C}_{\ell}^{\text{theory}-1}(r,\beta_b) \mathbf{D}_{\ell} + \log(|\mathbf{C}_{\ell}^{\text{theory}}(r,\beta_b)|) \right]$

One Prior Case

Test case in Jost et al. PRD 2023: SO SAT-like survey (6 frequency channels)

Spectral parameters are correctly estimated (d0s0 input)

With only one prior of $\sigma(\alpha_{\text{prior}}) = 0.1^{\circ}$ all polarization angle are retrieved with $\sigma(\alpha_{\sf j}){\geq}$ 0.1°

Multiple Priors

Adding priors improves the precision:

- 6 priors σ($α_{prior}$) = 0.1°
- σ(α _i) $\geq 0.05^{\circ}$

Cosmological Parameters (1 prior)

For r:

- Correct component separation
- Absolute angle marginalization $\beta_h \Rightarrow$ no E→B leakage

⇒ **no bias on r**

For $β_b$:

- Correct component separation
- Calibration priors

 \Rightarrow **no bias on β**_b

Cosmological Parameters (6 priors)

 $\text{With } 6 \text{ of } \alpha_{\text{prior}} = 0.1^{\circ} \Rightarrow \sigma(\beta_{\text{b}}) = 0.07^{\circ}$ Enough for 5σ detection with current hints!

Evolution With Prior Precision

Input d0s0, with 1 or 6 priors

Two regimes:

Evolution With Prior Precision

Prior driven

Input d0s0, with 1 or 6 priors

Two regimes:

- prior driven

Evolution With Prior Precision

Input d0s0, with 1 or 6 priors

Two regimes:

- prior driven
- noise / cosmic variance plateau

Biased Priors

With biased priors:

- Prior on all channels, σ($α_i$) = 1 $^{\circ}$
- Priors randomly biased by $N(0,1^{\circ})$
- All channels biased by the same amount (relative angles are still retrieved)

Biased Priors

With biased priors:

- **r** retrieved **without bias** (global angle marginalization)

$$
-\Delta(\beta_b) \approx \frac{1}{n_{\text{prior}}} \sum \Delta \alpha_{\text{prior}}
$$

- Having more independent priors should help reduce possible bias

Conclusion

- Framework to include and optimise the information from calibration priors
- Can retrieve r and β_h
- Application to LiteBIRD forecast paper
- Input maps can come from different sources with different priors (or lack of) \rightarrow open door for cross-calibration
- Future application to SO SAT analysis
- Need to include other effects currently working on filtering (work in progress in SO)

